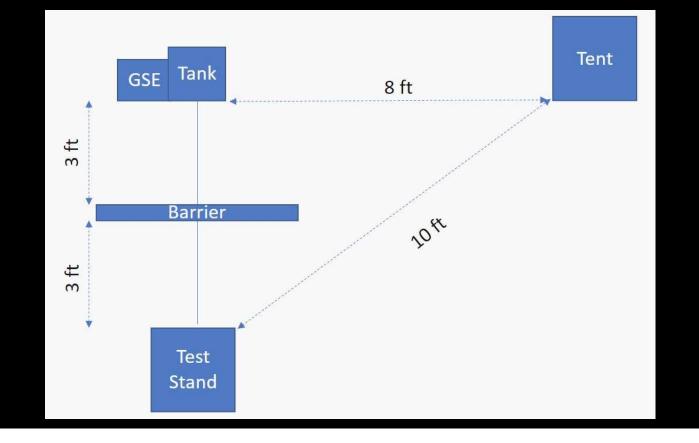

FAR Dollar-Per-Foot PDR

Test Team


Test Stand CAD

Chungus test stand

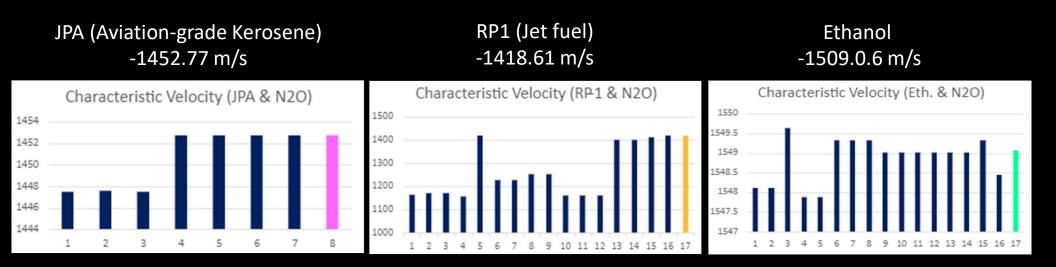
Static Fire Test Layout

Plumbing & GSE Team

Propellant Choice

Oxidizer Choice: Nitrous Oxide

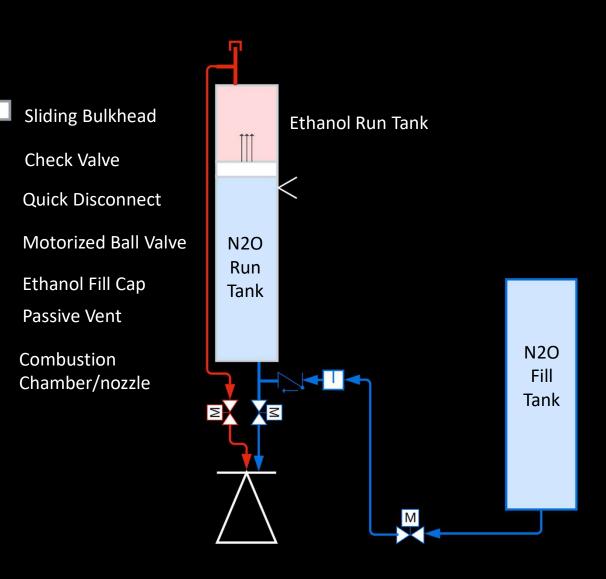
- Self-Pressurizing
 - does not require inert gas for pressurization
 - Pressurizes to 750 psi at 70° F
- Non-cryogenic
 - Easier to store and use
 - allows for the use of cheaper valves
- KXR provides it for free


Fuel Choice: Ethanol

- Powerful and Cost Efficient
- •Burns "clean"
 - eliminates the need to
- dismantle and clean the engine

Propellant Choice

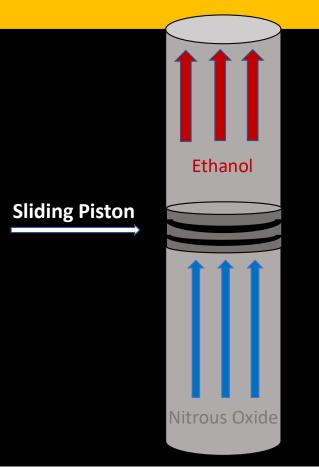
Characteristic Velocity Comparisons

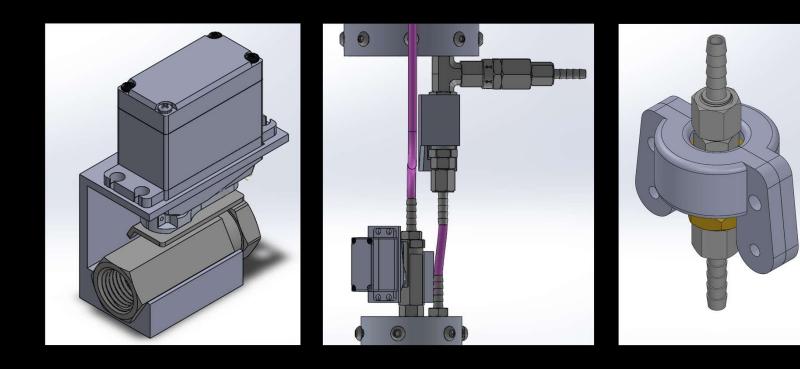

P&ID

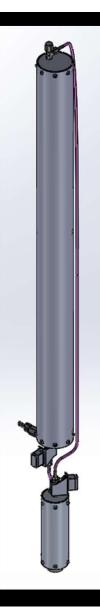
- Sliding Bulkhead Provides fuel pressurization.
- Check Valve prevents unwanted • backflow after disconnect.

 \square

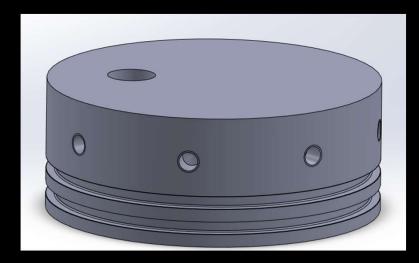
M

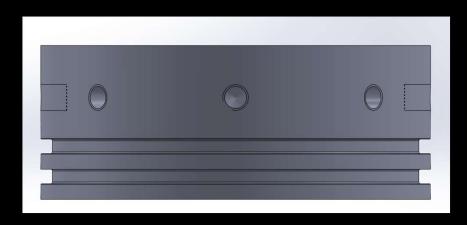

- Motorized Ball Valves allow for remote operation
- Ethanol fill cap allows fueling of Both buikheads have Ethanol Run tank prior to launch offset holes allowing for
- fuel and oxidizer lines to Fuel runs from top of tank to the run efficiently to their center of injector. respective destinations
- Nitrous Oxide fuels by self-• pressurization through a quick disconnect and is passively vented through the side of the tank.


Run Tank "Piston" design


- Eliminates the need for an inert gas
- Less valves and material
 --> significantly cheaper
- Eliminates the need for two separate venting systems
 - --> safer and more reliable
- Friction ensures piston stays in position before pressurization

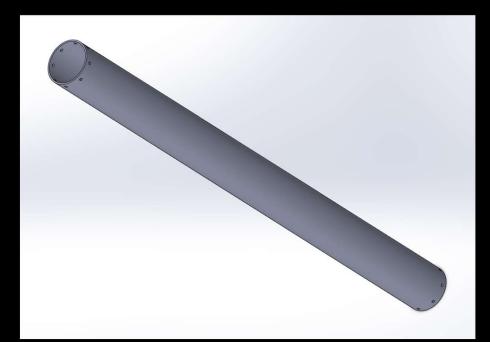
CAD Assembly





Tank Bulkheads

- 8 bolts per bulkhead
- All 3 have secondary O-rings
- Offset plumbing hole

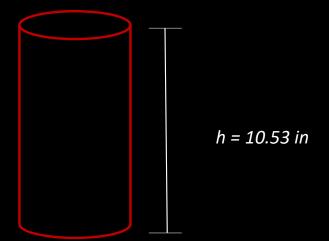


Tank Cylinder

- OD: 4 in
- ID: 3.75 in
- 1/8 in wall thickness
- Total length is based on propellant volume and bulkhead heights

Run tank Assembly

Plumbing Assembly


Tank Dimension Calculations - Ethanol

Material Properties:

Density at 100°F = 774 $\frac{kg}{m^3} \approx 0.028 \frac{lb}{in^3}$ $m_{ethanol} = 3.256 \ lb$

$$v_{o/f} = \frac{m_{o/f}}{\rho}$$

$$\frac{m}{v} = \rho$$
 $\frac{m}{\rho} = v = \pi r^2 h$ $h = \frac{m}{\rho \pi r^2}$

$$h = \frac{3.256}{0.028 * \pi * 1.875^2} = 10.52868 \approx 10.53$$
 in

Tank Dimension Calculations – Nitrous Oxide

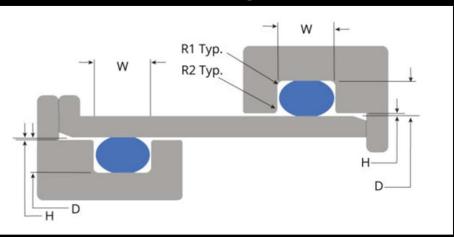
Material Properties:
Density at
$$100^{\circ}F = 452 \frac{kg}{m^3} \approx 0.016 \frac{lb}{in^3}$$

 $m_{nitrous} = 6.39 \ lb$

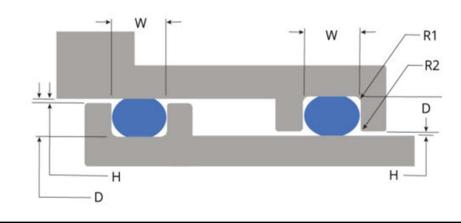
$$v_{o/f} = \frac{\dot{m_{o/f}t}}{\rho}$$

$$\frac{m}{v} = \rho \qquad \qquad \frac{m}{\rho} = v = \pi r^2 h \qquad \qquad h = \frac{m}{\rho \pi r^2}$$

$$h = \frac{6.39}{0.016 * \pi * 1.875^2} = 36.16$$
 in



O-Rings & O-Ring Grooves


O-Rings: A568A #201-284

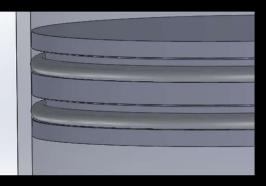
Cross sectional diameter: 0.125in

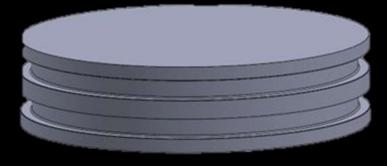
Bulkheads: Static gland seal

Piston: Dynamic gland seal

O-Rings & O-Ring Grooves

Static Gland Seal

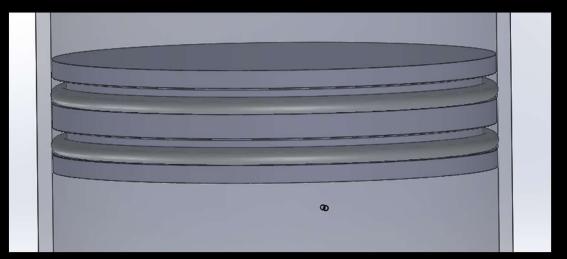

AS568 Series	O-Ring Cross-Section		Gland Depth (D)	Squ	eeze	Gland Width (W)				Gap (H)	Gland Corner Radii	
	Nominal	TOL (+/-)		Actual	Percent	Nominal	TOL (+/-)	w/ 1 Backup Ring	w/ 2 Backup Rings	MAX	R1	R2
-0XX	0.070	0.003	.050- 0.052	.015023	22%-32%	0.095	0.002	0.140	0.207	0.002	0.007	0.005
-1XX	0.103	0.004	.081083	.017025	17%-24%	0.142	0.003	0.173	0.240	0.002	0.007	0.005
-2XX	0.139	0.004	.111113	.022032	16%-23%	0.189	0.003	0.210	0.277	0.002	0.017	0.005
-3XX	0.210	0.005	.170173	.032045	15%-21%	0.283	0.003	0.313	0.412	0.003	0.027	0.005
-4XX	0.275	0.006	.226229	.040055	15%-20%	0.377	0.003	0.410	0.540	0.003	0.027	0.005



O-Rings & O-Ring Grooves

Dynamic Gland Seal

AS568 Series	O-Ring Cross-Section		Gland Depth (D)	Squ	eeze	Gland Width (W)				Gap (H)	Gland Corner Radii	
	Nominal	TOL (+/-)		Actual	Percent	Nominal	TOL (+/-)	w/ 1 Backup Ring	w/ 2 Backup Rings	MAX	R1	R2
-0XX	0.070	0.003	.055- 0.057	.010018	15%-25%	0.095	0.002	0.140	0.207	0.002	0.007	0.005
-1XX	0.103	0.004	.088090	.010018	10%-17%	0.142	0.003	0.173	0.240	0.002	0.007	0.005
-2XX	0.139	0.004	.121123	.012022	9%-16%	0.189	0.003	0.210	0.277	0.002	0.017	0.005
-3XX	0.210	0.005	.185188	.017030	8%-14%	0.283	0.003	0.313	0.412	0.003	0.027	0.005
-4XX	0.275	0.006	.237240	.029044	11%-16%	0.377	0.003	0.410	0.540	0.003	0.027	0.005



Vent Hole Calculations

Vent hole

- drilled just below the piston (at its unpressurized position)

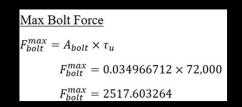
- We are still determining the dimensions required

Bolt Shear Calculations

Force acting on the bulkhead as a product of the area of the bulkhead and the maximum expected operating pressure (MEOP).

Maximum Force a bolt can take is a product of its cross-sectional area and shear strength

Force of Bulkhead


$$F_{bulk} = \left(\frac{\pi}{4} (D_i)^2 \times MEOP\right)$$

$$F_{bulk} = \left(\frac{\pi}{4} (3.75)^2 \times 1051.669\right)$$

$$F_{bulk} = \left(\frac{\pi}{4} (14.0625) \times 1051.669\right)$$

$$F_{bulk} = (11.04466167 \times 1051.669)$$

$$F_{bulk} = 11615.32829psi$$

Dividing the expected bulkhead force by the maximum force a bolt can take gives the minimum number of bolts

Minimum number of bolts multiplied by the targeted safety factor results in the actual number of bolts. $\frac{\text{Minimum Number of Bolts}}{n_{bolts} = \frac{F_{bulk}}{F_{bolt}^{max}}}$ $n_{bolts} = \frac{11615.32829}{2517.603264}$ $n_{bolts} = 3.690916184$ $n_{bolts} = 4.61$ $n_{bolts} \approx 5$

Number of Bolts Based on Safety Factor
$$n_{bolts}^{SF} = SF \times n_{bolt}$$
 $n_{bolts}^{SF} = 1.5 \times 5$ $n_{bolts}^{SF} = 7.5$ $n_{bolts}^{SF} \approx 8$ $n = 8$

Bolt Shear Calculations

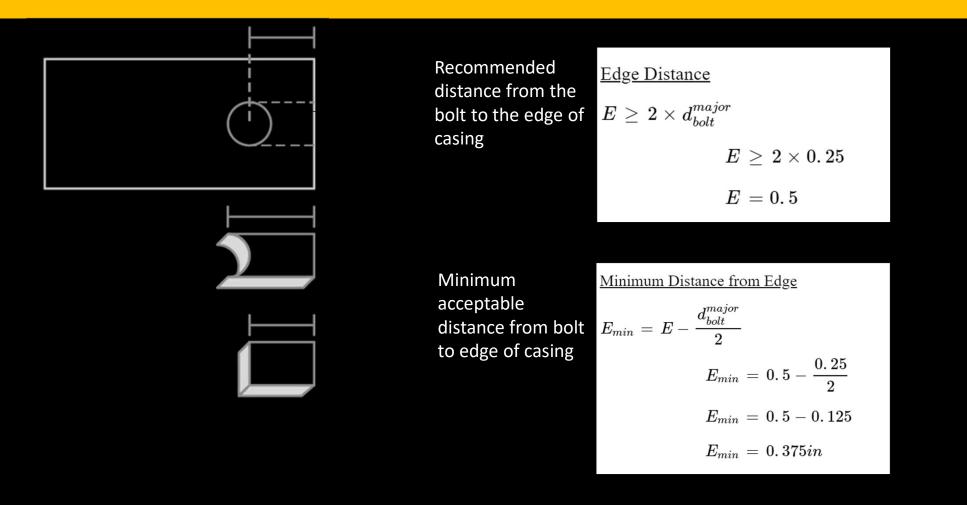
Safety factor can be determined by calculating the force of the bulkhead and dividing it by the product of the cross-sectional area of the bolts and the number of bolts.

$$\frac{\text{Bolt Shear}}{\sigma_{bolt shear}} = \frac{\left(\frac{\pi}{4}(D_i)^2 \times MEOP\right)}{\left(\frac{\pi}{4}(d_{bolt})^2 \times n\right)}$$

$$\sigma_{bolt shear} = \frac{\left(\frac{\pi}{4}(3.75)^2 \times 1051.669\right)}{\left(\frac{\pi}{4}(0.211)^2 \times 8\right)}$$

$$\sigma_{bolt shear} = \frac{\left(\frac{\pi}{4}(14.0625) \times 1051.669\right)}{\left(\frac{\pi}{4}(0.044521) \times 8\right)}$$

$$\sigma_{bolt shear} = \frac{(11.04466167 \times 1051.669)}{(0.034966712 \times 8)}$$


$$\sigma_{bolt shear} = \frac{(11615.32829)}{(0.279733696)}$$

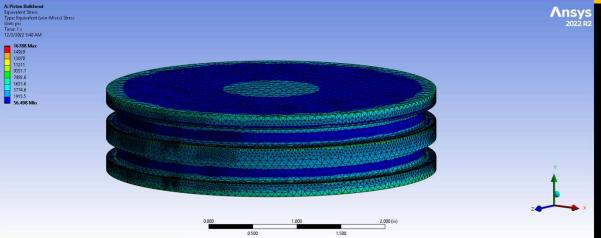
$$\sigma_{bolt shear} = 41522.80707psi$$

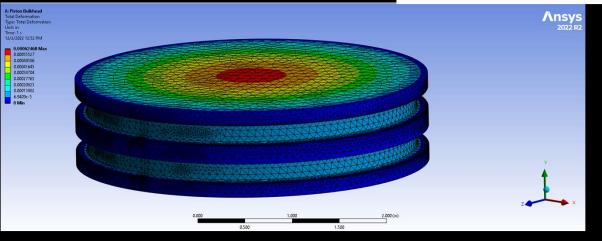
Shear strength of each bolt (60% of Ultimate Tensile Strength) dived by the bolt shear force yields the actual safety factor.

Safety Factor 60% of UTS
$FS_{boltshear} = \frac{0.60 \times UTS}{1}$
$\sigma_{boltshear} = \sigma_{boltshear}$
$-\frac{0.60 \times 120,000}{0.00}$
$FS_{boltshear} = \frac{0.00 \times 120,000}{41522.80707}$
$FS_{1} = \frac{72,000}{72,000}$
$FS_{boltshear} = \frac{72,000}{41522.80707}$
$FS_{boltshear} = 1.733986815$
$FS_{boltshear}pprox 1.7$

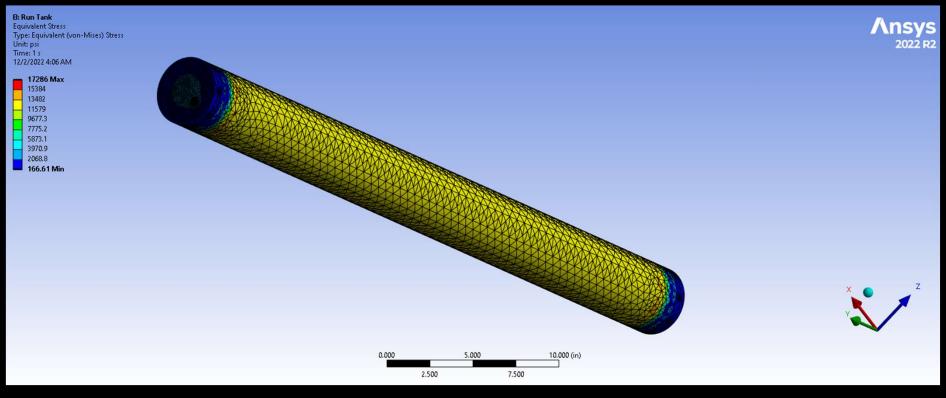
Bolt Tear-out Calculations

Run Tank Hoop Stress

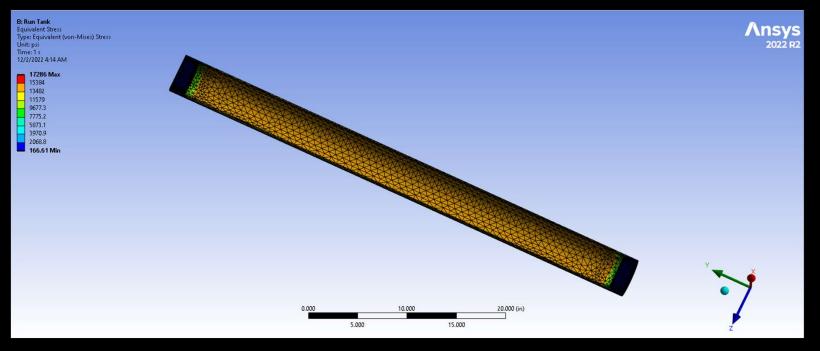

• Hoop stress based on a maximum expected pressure of 1051.669psi.

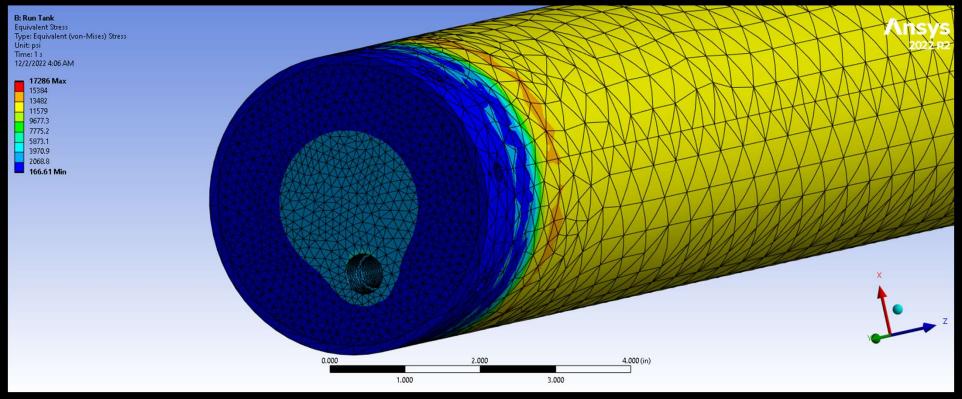

$$\begin{array}{l} \underline{\text{Hoop Stress}}\\ \overline{\sigma_h} = \frac{P \times r}{t}\\ \sigma_h = \frac{1051.\ 669 \times 2}{0.\ 125}\\ \sigma_h = \frac{2103.\ 338}{0.\ 125}\\ \sigma_h = 16826.\ 704psi \end{array}$$

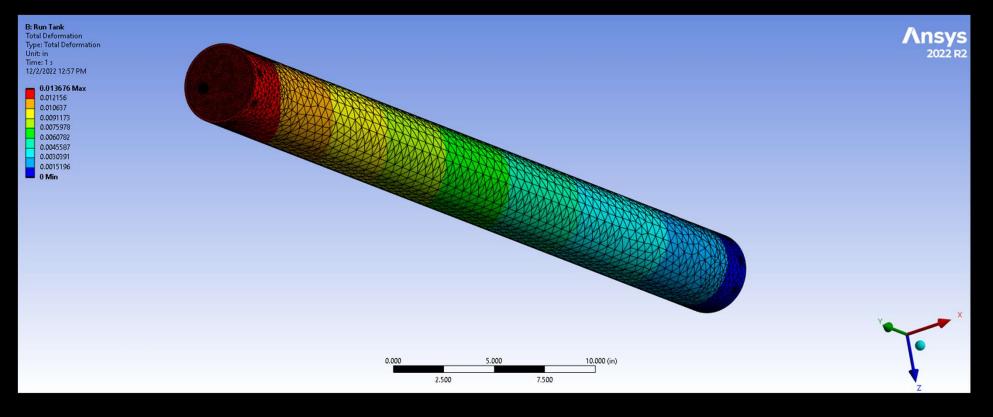
• Safety Factor of Hoop Stress

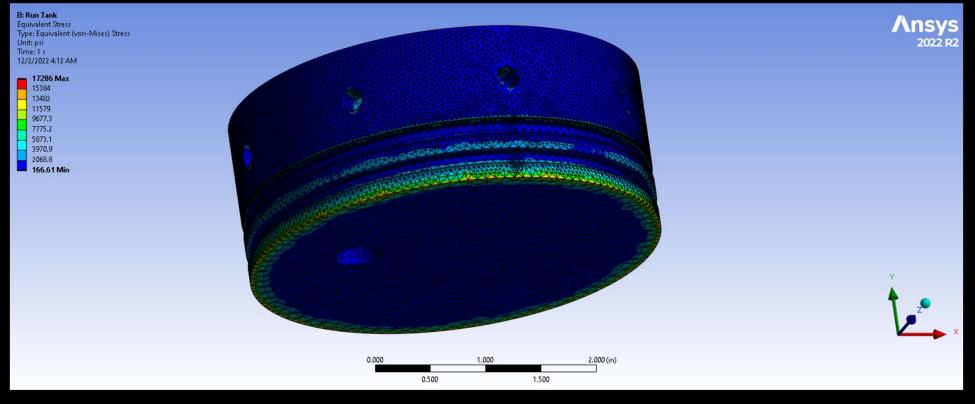

$$egin{aligned} & \underline{Safety\ Factor\ of\ Hoop\ Stress} \ SF_{hoop} &= rac{ au_u^{alum}}{\sigma_h} \ & SF_{hoop} &= rac{30,000 psi}{16,826.\,704 psi} \ & SF_{hoop} &= 1.\,78 \ & SF_{hoop} &\approx 1.\,8 \end{aligned}$$

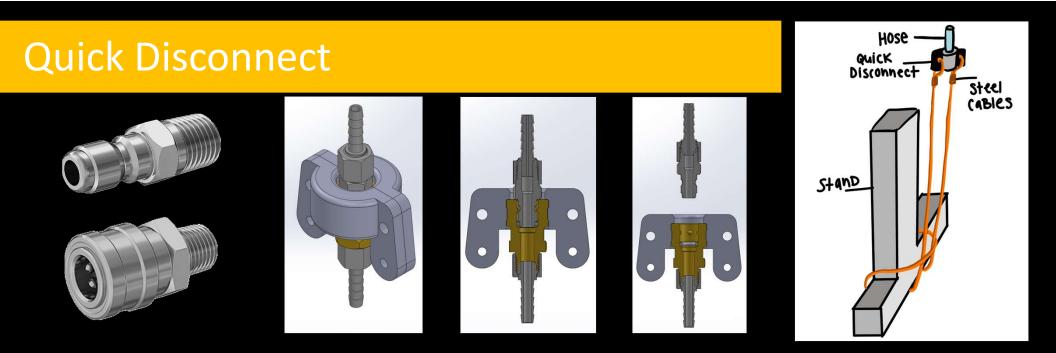
Piston Bulkhead Stress at center = 2000 psi Max deformation < 0.001 in




Run Tank


Run Tank: Average inner hoop stress: 14500 psi SF: 2.07


Run Tank



Run Tank

Bulkhead

- Quick Disconnect is a hydraulic Quick Disconnect with a sleeve.
- The 3D printed clamp fits over sleeve of the quick disconnect.
- Metal wire looped through the holes in the clamp anchors it down to launch infrastructure.
- At liftoff, the rocket pulls on male end of the disconnect causing the anchored sleep to move disconnecting the line.

Quick Disconnect in Action

Real-Time

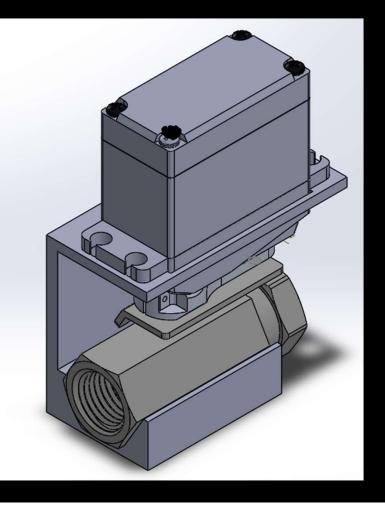
The combined flexibility of the steel wire and the hose eliminates the need to manufacture a perfectly aligned rigid structure that needs to be bolted to the launch pad

Valve Selection

Design Constraints

- 1.5 factor of safety (minimum)
- Normally open
- Motorized/remotely actuated

Valve Choice


- Ball Valves less pressure loss compared to solenoid valves
- "Compact" able to fit inside rocket
- Requires approximately 10 in-lbs of torque

Servo Motor

- 25 kg of torque (more than 17 in-Ibs)
- Comes with a servo arm

Servo Mount

- The mount will be 3D printed
- The ball valve lever will be adjusted to lay flat for spacing
- The servo arm and valve lever will be connected by a bolt and nut

RC Servo Remote & Receiver

Aero Sport 2.4GHs FHSS-1

- free (normally \$100)
- 5 channel 2.4GHz transmitter
- compatible with both digital and analog servos (we use digital)
- Binds remotely to an inline receiver

RX 500 receiver

- free (normally \$80)
- Full Range receiver with dual antennas
- wires inline to the servo's inside the rocket

Thermal Managment

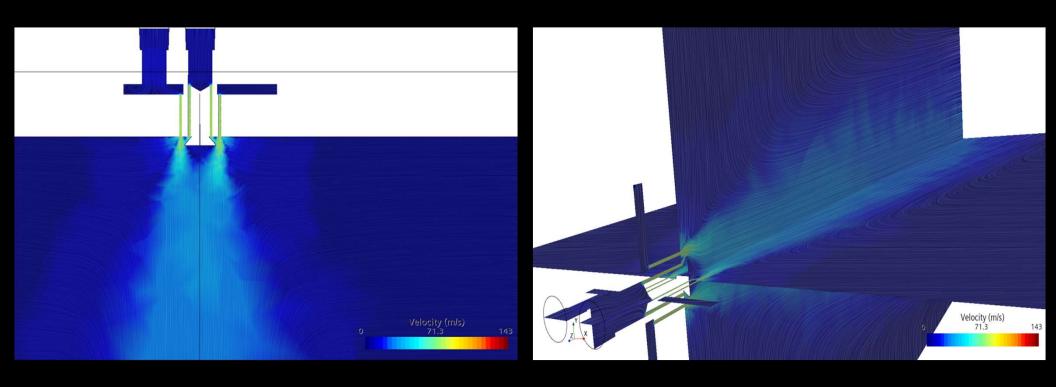
To keep the Nitrous Oxide fill tank at expected temperatures multiple thermal management systems will be employed.

- Before erecting the rocket, the run tanks will be kept cool with damp blanket, which will be removed before moving it to the launch stand.
- The Nitrous Oxide fill tank will be kept continually cool with damp towel while on the pad and thermal reflective material will be used to keep heat off.

Overview

- Liquid Engine
- Target Impulse: ~M Class (~6kNs)
- Initial Thrust ~800N
- Burn Time ~8 seconds

Engine Team


Injector

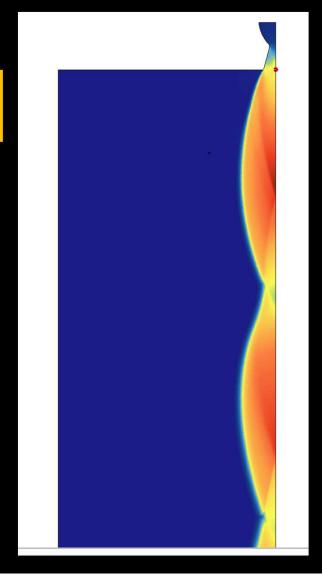
- Pintle style injector "Scrintle"
 - Showerhead isn't as good for atomization.
- Screw is used as main diverter for fuel
- 12 holes for N2O, 8 holes for Ethanol
- Orifice diameter Of 3/64 for both fuel
 - Ease of manufacturing keeping diameter the same

$6362538\sqrt{\frac{2.238(1.7)}{46.44016(70)}}$	×
	= 0.0217663208547
$\frac{4(0.0217865208547)}{(\pi)12}$ N_2	×
20	= 0.0480572532711
$1.4241692\sqrt{\frac{2.238(1.7)}{50112(70)}}$	×
	= 0.0139692710397
(<u>4(0.0139692710397)</u> (s)	×
	= 0.0471516546619

Injector CFD Sims

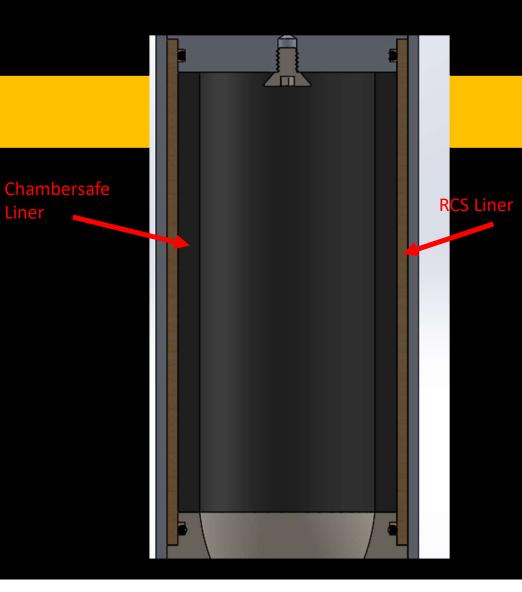
Nozzle

- Conical nozzle
 - Bell was looked at, but at this size was deemed not worth it
- Inconel vs Copper/Aluminum
 - Inconel, we get for free
 - Copper/Aluminum, didn't like the Al near the hot gas
- Decided on Inconel as it has
 - Fantastic heat properties
 - Super strong, should last for every possible firing
 - Free


Nozzle Cont.

- Throat Diameter of 0.75in
- Exit Diameter of 1.452in
- Area Ratio of 3.75
- Normal divergence angle of 15°
- Calculated Mach Number = 2.75
- Simulated Mach Number = 2.15

	CHAMBER	THROAT	EXIT
nf/P	1.0000	1.8301	23.825
BAR	24.132	13.186	1.0129
К	1954.72	1705.29	1003.72
O, KG/CU M	2.6029 0	1.6304 0	2.1722-1
KJ/KG	-927.12	-1332.62	-2564.80
KJ/KG	-23973.7	-21438.4	-14408.6
KJ/(KG)(K)	12.2645	12.2645	12.2645
(1/n)	17.530	17.531	17.898
LV/dLT)p	1.0015	1.0011	1.4587
, KJ/(KG)(K)	2.1254	2.0823	5.1445
CH NUMBER	0.000	1.000	2.749
PERFORMANCE PARAMETERS			
/At		1.0000	3.7500
TAR, M/SEC		1446.0	1446.0
		0.7079	1.4168
ac, M/SEC		1813.7	2276.3
p, M/SEC		1023.6	2048.7
	nf/P BAR K 0, KG/CU M KJ/KG KJ/KG KJ/KG (1/n) LV/dLP)t LV/dLP)t LV/dLT)p , KJ/(KG)(K) MMAs N VEL,M/SEC CH NUMBER RFORMANCE PARJ /At TAR, M/SEC ac, M/SEC	nf/P 1.0000 BAR 24.132 K 1954.72 O, KG/CU M 2.6029 0 KJ/KG 0.00000 KJ/KG -927.12 KJ/KG -23973.7 KJ/(KG)(K) 12.2645 (1/n) 17.530 LV/dLP)t -1.00016 LV/dLP)t -1.00016 LV/dLT)p 1.0015 , KJ/(KG)(K) 2.1254 MMAs 1.2881 N VEL,M/SEC 1092.8 CH NUMBER 0.000 RFORMANCE PARAMETERS /At TAR, M/SEC ac, M/SEC	/At 1.0000 TAR, M/SEC 1446.0 0.7079 ac, M/SEC 1813.7


Nozzle Sims

Thermal Liner

- Custom made liner
- Gas hot and long enough RCS liner would burn through
- Hybrid of both, RCS liner as backing, custom takes bulk of heat

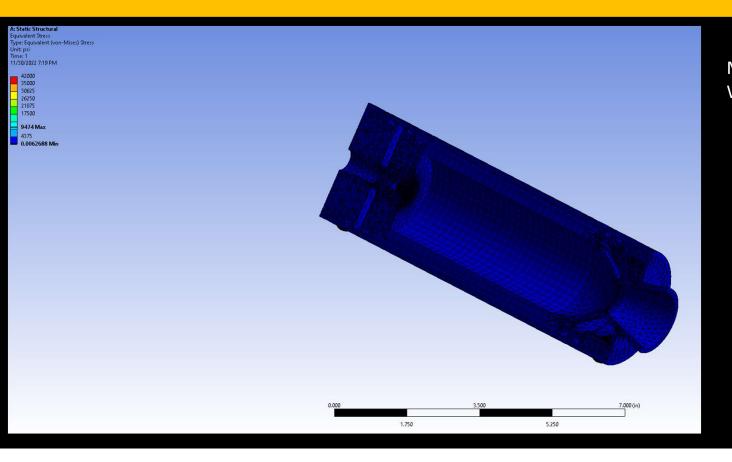
CHAMBERSAFE

Castable High-temperature Ablative Micro-Balloon Epoxy Resin Syntactic Auto-extinguishing Foam Experimental liner material.

• Moldable liner using Phenolic Micro-balloons, epoxy and sodium bicarbonate.

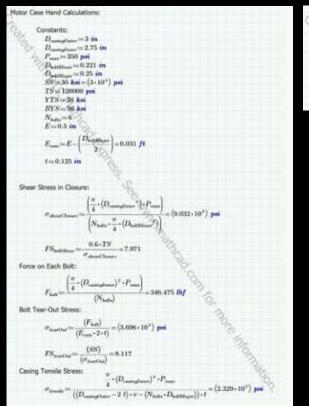
Density	Regression Rate Lower Bound*	Regression Rate Upper Bound*
0.578 oz/in ³	0.018 in/s	0.028 in/s
1.01 g/cm3	0.46 mm/s	0.71 mm/s
*Regression rates measure	ed in Half Cat engine using Nitrous Oxide and I	sopropyl Alcohol at an OF Ratio of 3.57

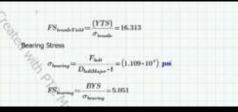
- Composition (by weight)
 - 63.3% Laminating Epoxy (including both resin and hardener)
 - 31.7% Sodium Bicarbonate (baking soda)
 - 5.0% Phenolic Micro-balloons
- Mold will be 3-D printed to fit our specifications inside the combustion chamber
- Epoxy resin releases heat as it cures so the mold will need to be cooled to prevent mold from deforming.
- Ablative properties are comparable to RCS Phenolic liner


Combustion Chamber

- 3in diameter
- L* of 200cm, found to be in the range of other Ethanol/N2O rockets
- Gives us a length of 5in
- OF Ratio of 1.5
- Chamber Pressure = 350psi

L = 200	×
+10 ==	200
A = 2.85	×
-10	
$h = \frac{L \cdot A}{\pi (3.81)^2}$	×
	h = 12.4989931955
$H = \frac{h}{2.54}$	×
	H = 4.92086346278


Sims



Max Stress seen is 9474psi We are chillin

Bolt Calculations

- Running 6 Bolts for forward and aft
- In conclusion, we are fine

O-Rings and Bolts

- Built engine on same basis as FAR motors
- 230 for closures to chamber wall
- 142 for closures to liner
- ¹⁄₄-28 Hex button head screws
 - Used by the other teams, cheaper to have universalization of parts

