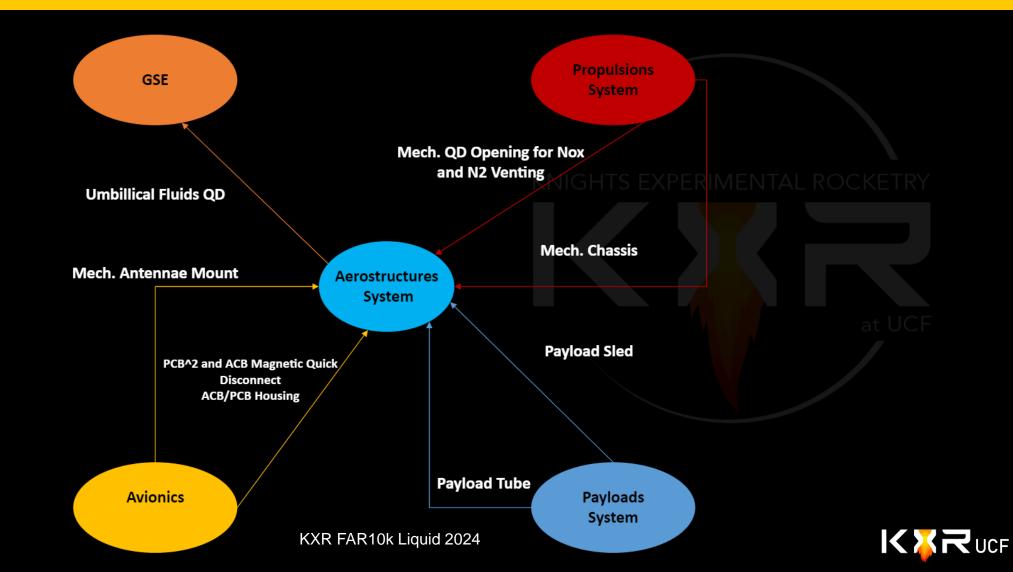
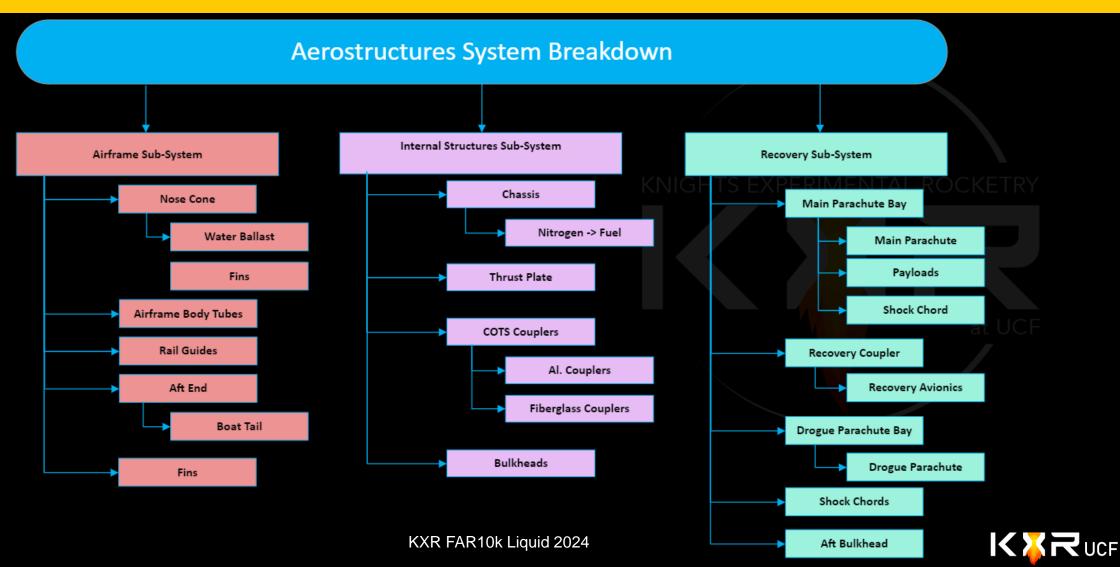


Aerostructures CDR FAR10k Basilisk


Aerostructures System



Aerostructures Interface Diagram

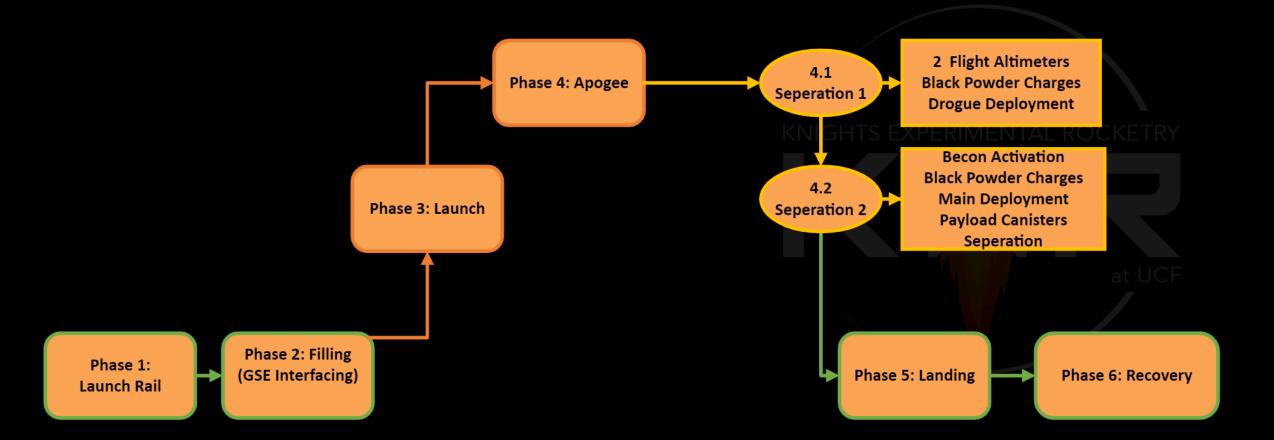
Aerostructures Architecture

Aerostructures Function

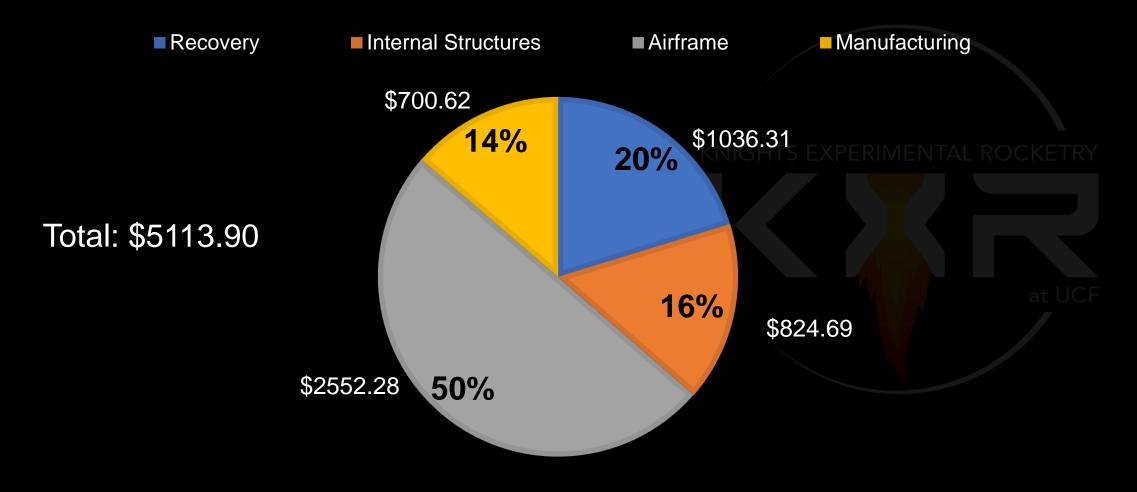
- Package all vehicle systems into a:
 - Flyable
 - Light Weight
 - Aerodynamic Structure

KNIGHTS EXPERIMENTAL ROCKETRY

Main interface for all systems of the vehicle


Aerostructures System Verification Plans

- Visual/Digital Inspection of System Interfaces
 - Accurate CAD Assembly
- FEA and ANSYS Component Load Analysis (Analysis)
- Test Article
 - Airframe and Fin Test Coupons Tested In UTM
- Dry Fitting Components (Demonstration)
- Confirmation of Dimensions and Mass (Inspection)
- Dual Deploy Recovery System Test (Test)
 - Black Powder and Shear Pin Tests



Aerostructures CONOPS

Aerostructures System Cost

Aerostructures TPM's

Measure	TPM Value	Units	Verification Method
Snatch Force	1954	lbf	Demonstration
Max Bending Moment	7173	lb-in	Analysis
Max Compressive Load	21309	lbf	Analysis
Lateral Shear	122	lbf	Analysis
Drag Coefficient	0.75	n/a	Analysis

Aero TPMS Cont. (Dimensions)

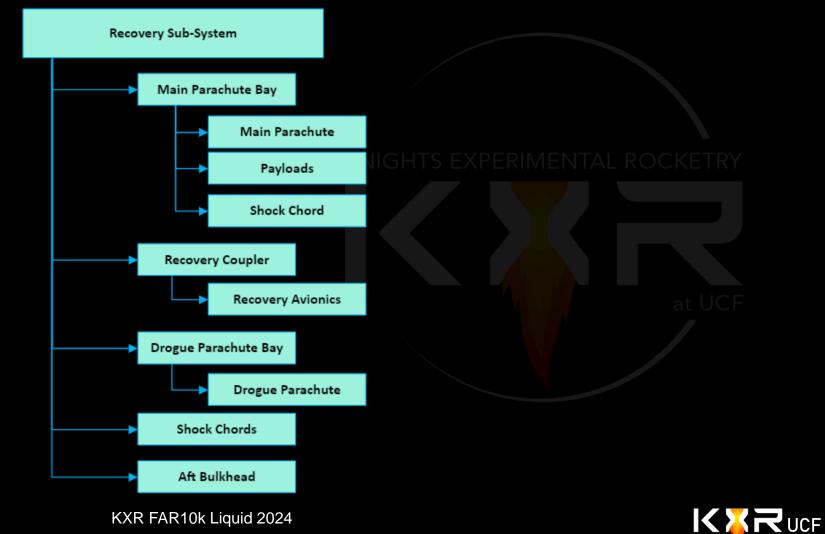
Measure	TPM Value	Units	Verification Method
Total Length	18.3	Ft	Inspection
Inner Diameter	6	in	Inspection
Total Wet Mass	145	lbf	Inspection
Dry Mass	66	lbf	Inspection
Stability	12% (3.8)	CAL	Simulation

Aerostructures TPM's

 Apogee:
 10346 ft

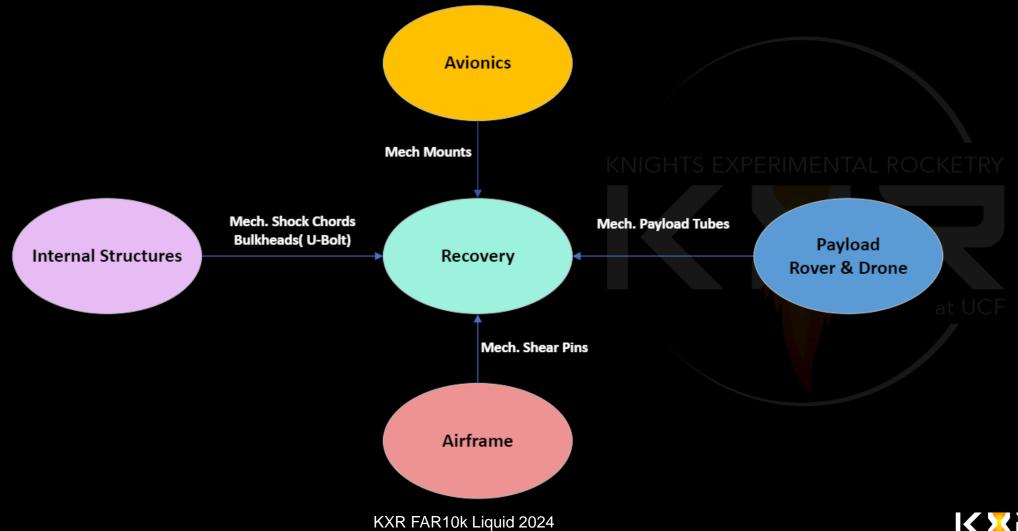
 Max. velocity:
 778 ft/s
 (Mach 0.689)

 Max. acceleration:
 2.84 G



Aerostructures System FMECA

Sub-System	Failure	Criticality	Effect	Mitigation
Recovery	Failure to Recover	Medium	Failure to Deploy Parachutes and Payload	Testing Campaign and Designed Redundancy
Internal / External	Structural Failure During Flight	High	Rapid Unscheduled Disassembly	FEA and Hand Calculations. Coupon Testing
Flight Dynamics	Instability During Flight	Medium	Rocket Becomes Instable During Flight	Design and Testing of Fin Coupons



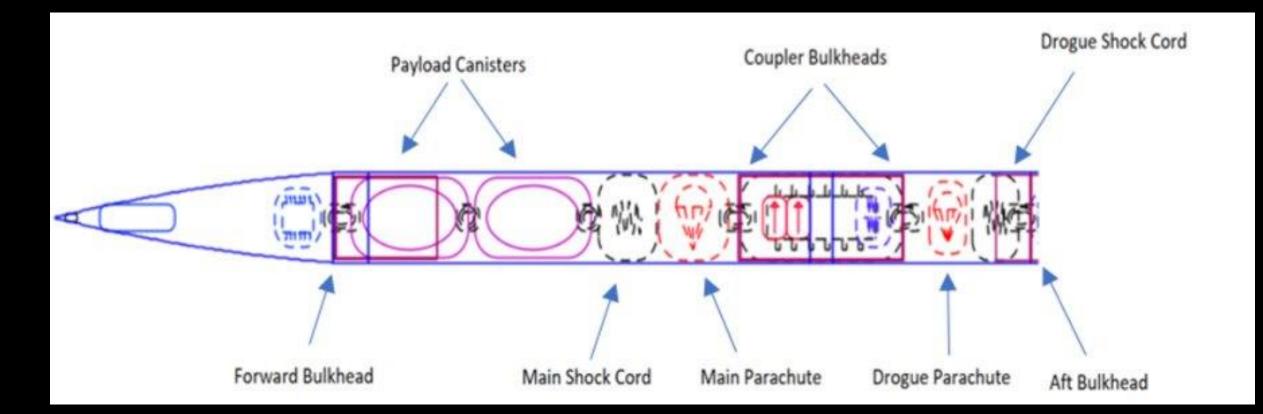
Recovery Component Breakdown

Recovery Interface Diagram

15

Recovery Functional Requirements

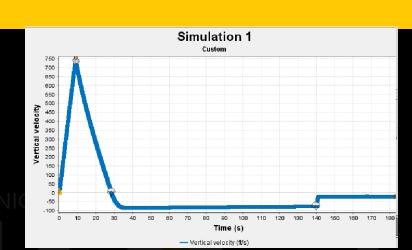
Requirement	Requirement Type	Verification Method
The Recovery System shall have redundancy	Functional	Demonstration
The Recovery System shall be visible during descent	Functional	Demonstration
The Recovery System shall have a dual-deploy system	Functional	Inspection
The Recovery System will create a safe controlled descent for the vehicle	Functional	Demonstration



Recovery TPM's

Measure	TPM Value	Units	Verification Method	
Snatch Force	1953.439059	Lbs.	Demonstration	CKET
Size of Recovery compartment	36" main+11" drogue	in	Inspection	
Packing Length of Chutes	199.9	cu. in.	Inspection	at U
Descent Rate	D: [75] M: [20]	Ft/s	Test	
Shock Chord Length	1345	In	Inspection	

Recovery Breakdown


Main Chute

□ We are using a Skyangle Classic Cert 3 XXL as our main parachute

- □ Uses 4 shroud lines
- □ CD of 2.92, which gives us a final descent speed at 21.4 ftps
- Deploys at 800ft
- □ Total flight time of 220s (3 minutes 40 seconds)

Used OpenRocket to validate, using coordinates of the launch site, 100 degree ambient temperature and up-to-date vehicle characteristics

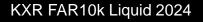
- □ We are attack the parachutes with fisherman knots and quick links
- □ We are using DB-XXL Main Deployment Bag as our fire blanket
- □ Deploy velocity at 76ftps

C3/XXL \$239.00

QUANTITY - 1 +

Drogue

44" SkyAngle Classic

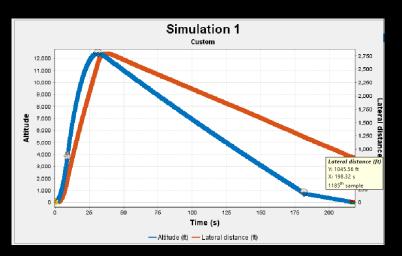


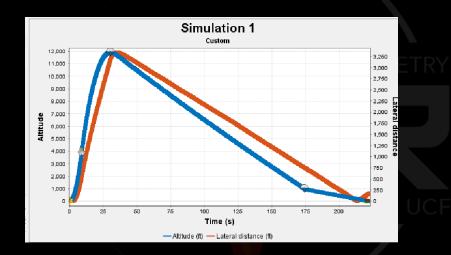
\$60.00 1 We are also looking at reusing a parachute from another project as our main to save costs; final decision is pending on our final cost vs budget and discussions with the other projects.

KNIGHTS EXPERIMENTAL ROCKETRY

- Descent speed of 75fps
- □ Coefficient of Drag 1.87
- Deploys at apogee
- Nominal deploy velocity at 0 ftps, horizontal velocity expected to be below 100 fpts, will depend on angle off the rail and wind

- □ Used OpenRocket to find a parachute in acceptable price
 - range with a descent speed of 75ftps
- □ We attach the Drogue shroud lines to the quick link through
 - Alpine Butterfly Loop
- We are using Medium SkyAngle Deployment Bag as our fire blanket.




Parachute Drift Analysis

According to National Oceanic and Atmospheric Association, for Mojave, CA:

- Max Windspeed 13mph
- Average Windspeed 7mph

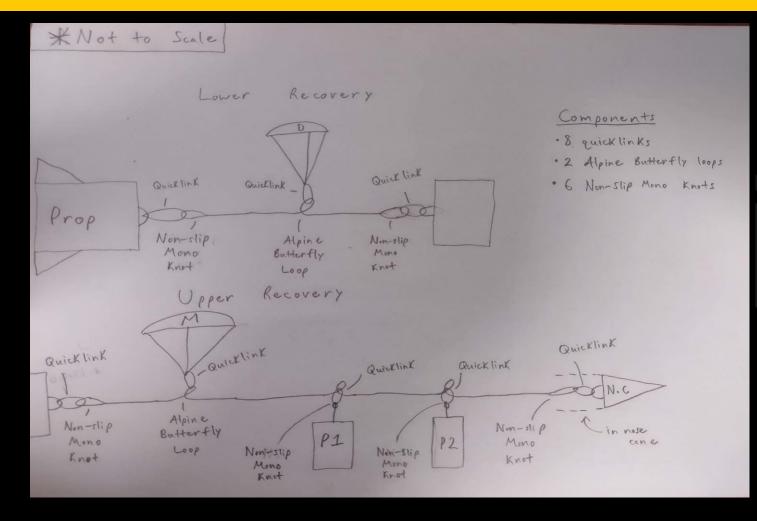
Average Windspeed: Expected drift radius of under 1000 ft with wind conditions of 7.5mph Both drift simulations take weathercocking into account with a 90* launch angle, the real radius will depend on launch angle of the rail and if the rocket remains straight off the rail

Peak Windspeed: Expected drift radius of under 500 ft with wind conditions of 13mph

Parachute Packing lengths

Drogue chute packing volume: Under 3 inches in length in a 6" airframe

Main chute packing volume: ²² 6 inches in length in a 6" airframe



Parachute configuration	,
Component name: Light Std Parabolic Parachute [Cd .97 (8.37 oz) 49.14 i	n^3] Custom V Parts Library
General Radial position Override Appearance Comment	
Сапору —	Placement
Diameter: 124 in	Position relative to: Top of the parent component
Material:	plus 25 🔷 in
Ripstop nylon, ultra lightweight, 2 mil (0.117 oz/ft²)	✓ Packed length: 6
Drag coefficient C _D : 2.92 🔹 Reset	Packed diameter: 6 👻 in
Shroud lines	✓ Automatic
Number of lines: 4	
Line length: 144 🛉 in	Deployment
Material:	Deploys at: † Specific altitude during descent ~
Spectra #200 [Round 1.5 mm, 1/16 in] (0.007 oz/ft)	plus 0 🔶 seconds
	Altitude:† 800 🖨 ft
	† This parameter can be overridden in each flight configuration.
Component mass: 0.634 lb (overridden to 0.523 lb)	Cancel OK
╨╬╓╫╓╫╦╶╲┨╴╹╻╴╲┝	
TI I	
	11/1-1-
ັ້ນ ວິດ ຣີ 🚽 📜 🕻 🍞 🐓	

KXR FAR10k Liquid 2024

Shock Cords

The recovery system will contain:

- 117 ft of ¼ " Kevlar shock cord
- 8 quick links
- 4 Alpine Butterfly Loops
- 4 Non-slip Mono Knots

Each knot will be epoxied for extra strength.

These components will provide the best chance of the system working as intended and not failing during execution.

Shock Cords

We are using quick links and two types of fisherman knots to prevent tangling of the payloads.

□ There will be rails developed by payloads inside to prevent tube knocking.

□We will have a beacon in the main compartment, but we are waiting on LTI for dimensions.

1/4" Kevlar shock cord Max Load 3000 lbs Price: \$143.52 (144 yards)

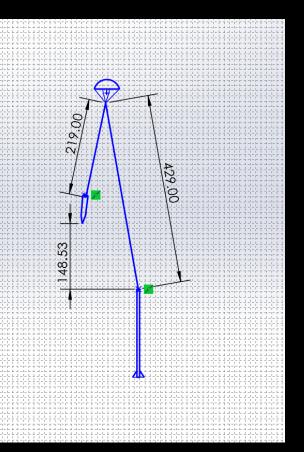
1/2 in. Zinc-Plated Quick Link Max Load 3,300 lbs Price: \$50.16 (8)

Non-Slip Mono Knot

	Material	Safety Factor
	¼" Kevlar shock cord	1.5
T/	½" Quick link	1.69

Alpine Butterfly Loop

Shock Cords

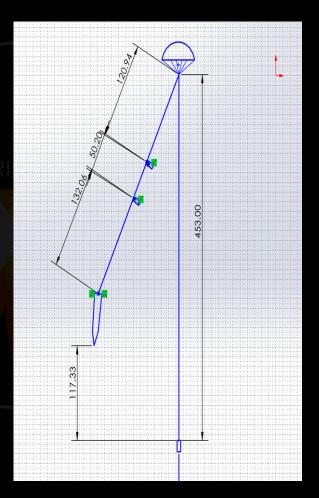

Drogue: Total Shock cord length (3 x length of Rocket): 648"

Drogue to upper body: 219"

Drogue to lower body: 429"

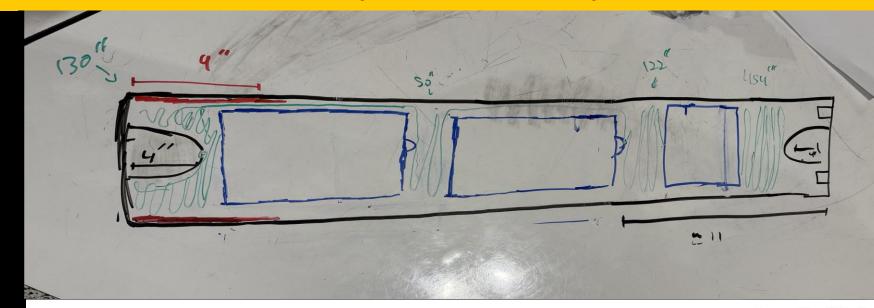
Clearance from upper body to lower body: 140" (Safety Factor of 2)

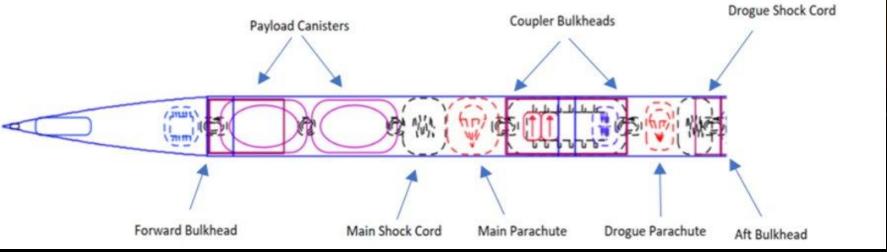
Rocket length: 216"


Main: Total Shock cord length (3.5 x length of Rocket): 756"

Parachute to Payload 128"

Distance between payloads: 50" Sf(3)


Payload to Nosecone: 113" Sf(1.5)


Nosecone to Coupler: 176" Sf(1.7)

Recovery and Payloads Interface

Payload dimensions

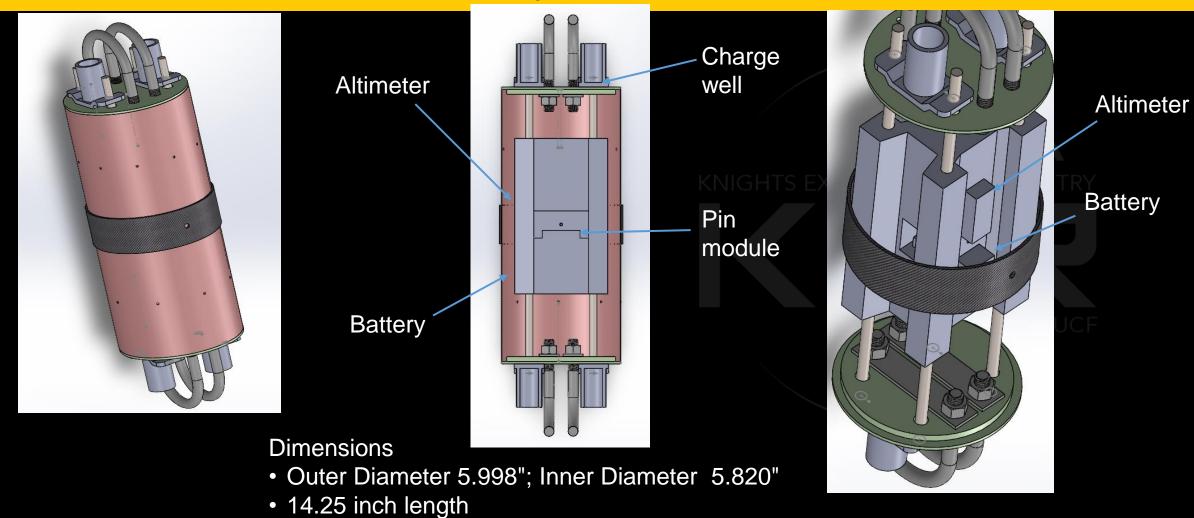
- 5.5" Diameter
- Rover Canister: 11" length
- Drone Canister: 11"

Recovery Dimensions

- 6" Diameter
- 36" Length

Shock Cord Length
117 ft of ¼ " Kevlar shock cord

Available space for Recovery after Payloads: 14" length



FMECA

Part	Failure	Criticality	Effect	Mitigation
Shock Chords	Snap	High	No Controlled Descent	Apply Safety Factor
Quick Links	Snap	High	No Controlled Descent	Apply Safety Factor
Shock Chords	Snap due to stress caused by heat	High	No Controlled Descent	Kevlar Shock Cord (heat resistant)
Shock Chords	Tangling With Payloads	High	Damage to the Rocket	Rail System for Payload
Shock Chords	Improper Shock Cord Lengths	Medium	Damage to the Rocket	Verify Lengths via Testing prototype
Shock Chords	Damage to Body Tube	High	Shredding of Shock Cord	Wrap or cover area of body tube where shock cord lies with duct tape.

Recovery Coupler

KXR FAR10k Liquid 2024

Coupler Costs

Material	Dimensions	Cost
G12 Fiberglass tube	Outer Diameter 5.998"; Inner Diameter 5.820"	\$99.00 madcowrocketry.com
4 Zinc-Plated Threaded Rod	3/8 in16 tpi x 24 in. Zinc-Plated Threaded Rod	\$3.47 Home depot
High-Strength Steel Nylon-Insert Locknut (20 pack)	Grade 8, 3/8"-16 Thread Size	\$4.50 Mcmaster.com
18-8 Stainless Steel Washer (100 pack)	3/8" Screw Size, 0.406" ID, 0.875" OD	\$7.33 Mcmaster.com
PVC Pipe	3/8 in. x 5 ft. White PEX-B Pipe	\$2.97 Homedepot
Shearpins (100 pack)	Nylon Pan Head Screws Phillips, 4-40 Thread, 1/2" Long (100 pack)	\$8.97 Mcmaster.com
Helical Insert (10 pack)	18-8 Stainless Steel Helical Insert, 4-40 Right- Hand Thread, 0.280" Long (10 pack)	\$4.71 Mcmaster.com
	Total	

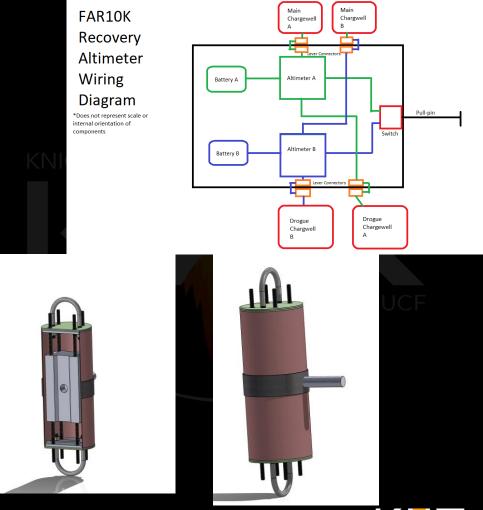
Recovery Coupler

- Shear pins
- 10 Nylon Pan Head Screws Phillips for Main parachute deployment
- 8 Nylon Pan Head Screws Phillips for Drogue parachute deployment
- Helical inserts to prevent thread stripping

Bolt Selector (select yellow box for dropdown)						
	Bolt Type	Max Force (lbs)	Min Force (lbs)	MinorA (in^2)	Max Stress (psi)	Min Stress (psi)
Drogue	#4-40	76	50	0.005191238	14640.05201	9631.613167
Main	#4-40	76	50	0.005191238	14640.05201	9631.613167
			outs		_	
Rocket ID (drogue) (in)	Rocket ID (main) (in)	Empty Length (drogue) (in) 🗠	Empty Length (main) (in)	Launchpad Height (ft)	Rocket Apogee (ft)	
6	6	11	30	2762	16000	
	_		d Outputs			
Temperature1 (F)	Temperature2 (F)	Atm. Pressure1 (psi)	Atm. Pressure2 (psi)	Ref Area Drogue (in^2)	Ref. Area Main (in^2)	
49.16728	-7.79272	13.30169173	7.127427439	28.27433388	28.27433388	< Temp/Pressure equations work up to 36152ft above sea lvl
Dro	gue		Ma	in		
Drag Top (lbs)	66.49		Drag Top (lbs)	49.67	< Add up drag below and	d above separation point (where it shears) to find your drag diff.
Drag Bottom (lbs)	105.81		Drag Bottom (lbs)	105.81		
Delta Drag (lbs)	39.31984546		Delta Drag (lbs)	56.13761346		
Sep. Force (lbs)	174.57321		Sep. Force (lbs)	174.57321		
Bolt Safety Factor	1.5		Hanging Section Weight (lbs)	20	< Weight of section bein	g held by main shear bolts after drogue deployment
Bolts	4.277861109		Bolt Safety Factor	2		
Bolts (rounded w/ SF)	8		Bolts	4.614216469		
Black Powder Safety Factor	2		Bolts (rounded w/ SF)	10		
Black Powder (grams)	3.448608579		Black Powder Safety Factor	1.8		
Black Powder (SF) (grams)	6.9		Black Powder (grams)	11.75662016		
			Black Powder (SF) (grams)	21.2		

KXR FAR10k Liquid 2024

Recovery Avionics General Architecture


□ Recovery system will use a fully dual redundant avionics

system to deploy parachutes

□ Both altimeters are fully able to deploy both parachutes

- □ Both powered by 9v batteries
- □ Nominal powered-on period of over 15 hours
- □ Avionics sit on a sled within the recovery coupler

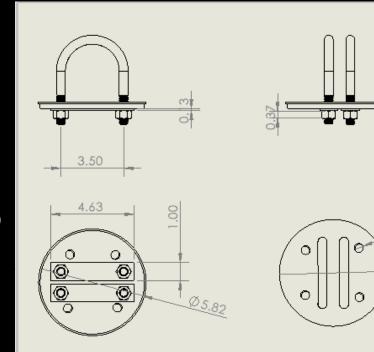
□ A pull-pin will activate the avionics system before flight, accessible from outside of the coupler; through vent hole

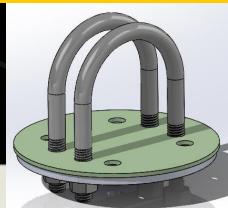
Recovery Avionics - Altimeters

- □ Stratologger CF Already owned by KXR
 - □ 1.5mah consumption, over 100 hours of nominal life
 - □ Samples atmosphere 20 times per second
 - Dual-Deploy computer
- □ Missileworks RRC2+ Already owned by KXR
 - □ 35mah consumption, 15 hours of nominal life
 - Dual-Deploy computer
- Back-up: Stratologger

FMECA

Part	Failure	Criticality	Effect	Mitigation
Threaded Rods	Shearing	High	Coupler Failure	PVC Piping to cover the rods, stronger nuts to withstand snatch force.
Altimeters	Detonating charges late	High	Parachute(s) deploy at high velocity or too late	Ground testing of altimeters
Altimeters	Does not detonate charges	High	Parachute(s) do not deploy	Ground testing of altimeters
Parachute	Parachute failure (rip, does not unfold)	High	Unsafe descent	Proper packing procedure, analysis of velocity at deployment




Recovery Bulkheads

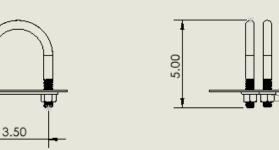
- Materials: G10 (FR4) Fiber glass plate, Black Oxidized Steel U-bolts, ½ " nuts and washers, wire quick connect, and wood Bulkhead lip
- □ Safety factors:
 - U-bolt- 1.02 Excel calculated
 - Bulkhead Plate: 13.7 Excel calculated
 - □ Shear force per bolt: 211 Excel calculated
- Due to the low SF there will be 2 U-bolts to counteract it
- □ With 2 U-bolts the force will be distributed over a larger surface area
- □ Forces: Snatch Bolt shear (1389 PSI), Shear Force per bolt (14.27 PSI)

$F = 0.5 * r * V_d^2 * C_d * A_m$

Snatch Force (N)	Snatch Force (lbs)	SF	Focre*SF (lbs)
5606.019256	1260.283264	1.55	1953.439059

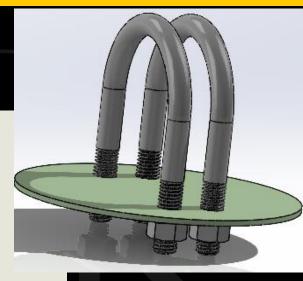
Ø6.00

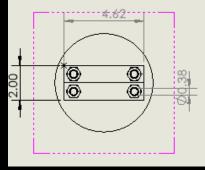
KXR FAR10k Liquid 2024


Recovery Bulkheads

□ Attachments:

- □ Recovery Coupler -3/8" rods with lock nuts to secure
- Body Bulkheads secured in place by G12 couplers


in body sections


- □ Verifications Excell calculators and physical tests
 - Using values from open rocket, other calculators, and manufacturers
 - Physical Test
- Forces applied:
 - □ Main areas: U-bolt, threads, and bulkhead plate
 - □ Transfer of Forces: Quick link > U-Bolt > back plate > Lip > BH Plate

0.37

Ø5.64

FMECA

Part	Failure	Criticality	Effect	Mitigation
U-bolt	Snaps	High	Vehicle Disassembly	The U-bolt has a Safety factor 1.02 thus 2 U-bolts are being used
Bulkhead Plate	Bolt Tear	High	Vehicle Disassembly	13.7 Safety Factor on the Bulkhead
				at UCF

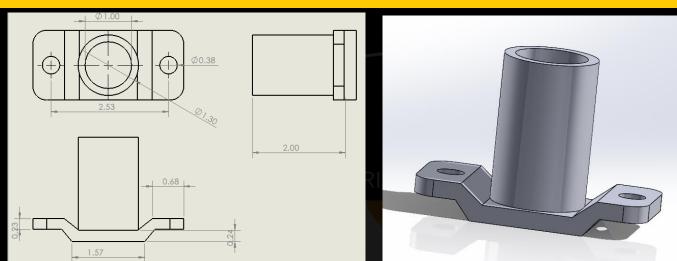
Bulkhead Cost

Part	Quantity	Cost	
U-bolt/nuts(2)/back plate	8	\$46.53	
G10(FR4)	1x0.125" x 12" x 24" sheet	\$42.11	AL ROCKETRY
Nuts ½ in	16	\$11.04	
Washers 1/2 in	16	\$11.04	at UCF
Wire quick connect	2	\$12.99	
Hardpoint wood	1 2ft x 4ft plank	\$5.15	

Black Powder

- Calculated Black powder by using values from open rocket (Fin height root chord Tip Chord & Pressure Base and Friction Coefficient) plugging into the aerodynamics forces we get drag top and bottom for drogue and main.
- □ Then we use drag top and bottom and use the black powder calculator
 - □ We used black powder safety values of 2 for drogue and 1.8 for main
 - □ Bolt safety of 1.5 for drogue and 2 for main.
 - □ We also got Rocket ID, length and hanging sections weight from Open rocket
- □ We will be using 6.9 Grams of black powder for the drogue and 21.2 grams of black powder for the Main

		Balt Calar	tor (select yellow box for drop	(auro)				
	Bolt Type			MinorA (in^2)	Max Stress (psi)	Min Street (nei)		
Drogue	#4-40	76	50	0.005191238	14640.05201	9631.613167		
Main	#4.40	76	50	0.005191238	14640.05201	9631.613167		
	1445	74	30	0.0031311.00	14040.03202			
		Inc	ate					
Rocket ID (drogue) (in)	Rocket ID (main) (in) 🔽	Empty Length (drogue) (in)	Empty Length (main) (in)	Launchoad Height (ft)	Rocket Apogee (ft)			
6	6	11	30	2762	16000			
		Calculate	d Outputs					
Temperature1 (F)	Temperature2 (F)	Atm. Pressure1 (psi)	Atm. Pressure2 (psl)	Ref Area Drogue (In^2)	Ref. Area Main (in^2)			
49.16728	7.79272	13.30169173	7.127427439	28.27433388	28.27433388	< Temp/Pressure equation	s work up to 36152ft abo	ove sea lvl
Droj	çüe		Ma	1				
Drag Top (lbs)	66.49		Drag Top (lbs)	49.67	< Add up drag below and	above separation point (w	here it shears) to find yo	ur drag diff.
Drag Bottom (lbs)	105.81		Drag Bottom (Ibs)	105.81				
Delta Drag (lbs)	39.31984546		Delta Drag (lbs)	56.13761346				
Sep. Force (lbs)	174.57321		Sep. Force (lbs)	174.57321				
Bolt Safety Factor	1.5		Hanging Section Weight (lbs)	20	< Weight of section being	gheld by main shear bolts a	after drogue deployment	1
Bolts	4.277861109		Bolt Safety Factor	2				
Bolts (rounded w/ SF)	8		Bolts	4.614216469				
Black Powder Safety Factor	2		Bolts (rounded w/ SF)	10				
Black Powder (grams)	3.448608579		Black Powder Safety Factor	1.8				
Black Powder (SF) (grams)	6.9		Black Powder (grams)	11.75662016				
			Black Powder (SF) (grams)	21.2				


Coefficient Inputs										
Componen ~	Pressure C(~	Base C _t ~	Friction C _c ~	Total Cc ~	Drag (lbf 🗠	Cn d 🗸	Cn 🗸	Lift (lbf. 🗠		
Nose Cone	0.04	0.00	0.03	0.07	26.20	0.00	0.00	0.00		
tose cone shoulde	0.00	0.00	0.01	0.01	1.96	0.00	0.00	0.00		
payload body tube	0.00	0.00	0.05	0.06	21.51	0.00	0.00	0.00		
ecovery switch rin	0.00	0.00	0.01	0.01	1.96	0.00	0.00	0.00		
ower recovery tub	0.00	0.00	0.04	0.04	14.86	0.00	0.00	0.00		
n mount	0.00	0.00	0.03	0.03	13.30	0.00	0.00	0.00		
trogen valves mou	0.00	0.00	0.02	0.02	6.26	0.00	0.00	0.00		
fuel tube	0.00	0.00	0.02	0.02	7.04	0.00	0.00	0.00		
fuel valves mount	0.00	0.00	0.02	0.02	6.26	0.00	0.00	0.00		
ox tube	0.00	0.00	0.06	0.06	21.51	0.00	0.00	0.00		
cc mount	0.00	0.00	0.02	0.02	6.26	0.00	0.00	0.00		
trapezodial fin set	0.02	0.00	0.01	0.03	9.78	0.00	0.00	0.00		
boat tail	0.00	0.07	0.02	0.09	20.55	0.00	0.00	0.00		
Total	0.05	0.07	0.31	0.44	157.44	0.00	0.00	0.00		
				Constant Inpu	its					
Density of air at	Maxwelesity	outer	Cross-sectional	α (angle of	Fin Area		Ein Bent Chard	Fig Tip Chard	Fin	
sea level	Max velocity	diameter	Area	attack)	Fin Area	g	Fin Root Chord	Fin Tip Chord	Height	
slugs/ft^3	ft/s	ft	ft^2	degrees	ft^2	ft/s^2	ft	ft	ft	
0.00238	1001.00000	0.51667	0.32844	0.00000	0.18960	32.17405	0.58	0.38	0.40	

KXR FAR10k Liquid 2024

Charge Wells

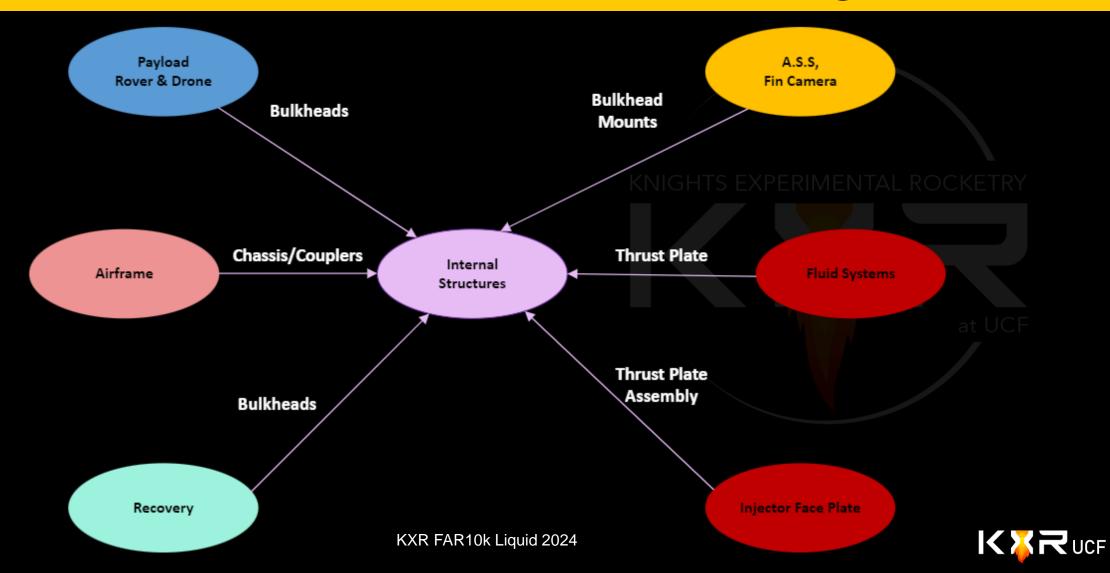
- 3D printed charge wells, Wing nuts 3/8", electrical tape, E-match, quick connect, and Wiring
- □ Charges will be packaged in fingers of gloves
- Then be placed in in well with electrical tape to secure it to the E-match and prevent any movement
- Igniting the charge the wires from the altimeter will be run through a quick connect to a small hole in the bottom of charge well

PM(g)	BD(g/cm^3)	PV (cm^3)	PV(in)	Actual Volume
21.1	1.7	12.4117647	0.757412	1.570796327
				0.964367295
2.356194				

PV = PM / BD P V = PM /B D Where PV is the Powder Volume (m^3) PM is the powder mass (g) BD is the bulk density (g/m^3) To calculate the powder volume, divide the powder mass by the bulk density.

FMECA

Part	Failure	Criticality	Effect	Mitigation
BP Fuse	Fails to ignite	High	Separation fails	Proper wiring
BP Amount	Too much BP	High	Separation fails	BP testing
BP Amount	Too little BP	High	Separation fails	BP testing

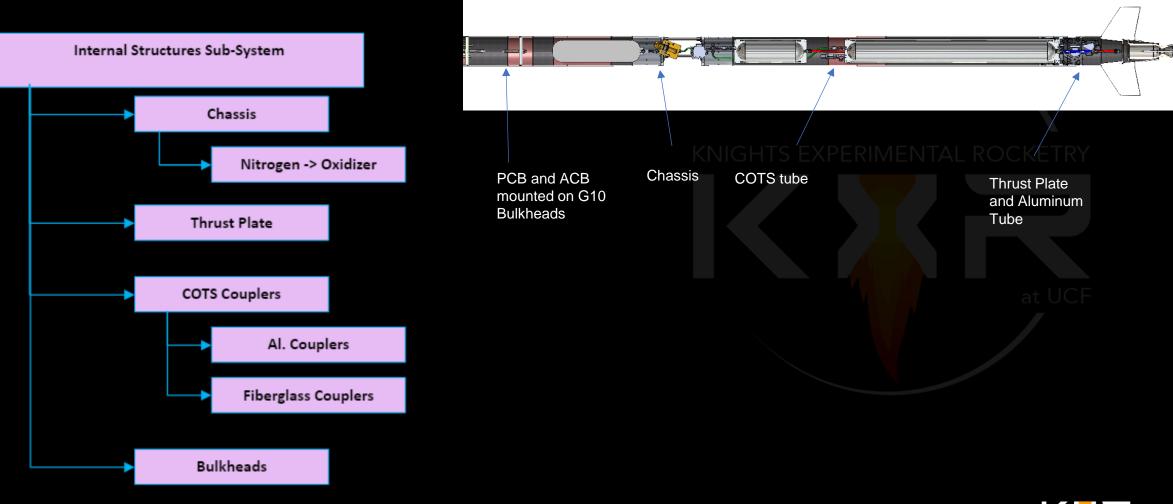

Recovery System Manufacturing

- Bulkheads
 - Made from G10 fiberglass
 - Bulkheads will be designed through CAD
 - The drawing file will be sent to a fabrication center to be laser cut
 - U-bolts will be bought from McMaster
 - Switchbands
 - Made from carbon fiber pre-preg
 - The 2" band will be cut from the lower recovery tube and the nitrogen tank tube
 - These tubes can be manufactured longer than needed to allow the switchbands to be cut from them

Internal Structures Interface Diagram

Internal Structures Functional Requirements

Requirement	Requirement Type	Verification Method
The Internal Structures sub-system shall support and protect the Propulsion and Payload systems	Functional	Analysis
The internal Structures sub-system shall withstand the loads and vibrations acting on the rocket	Functional	Analysis
The Internal Structures sub-system shall house and provide access to the internal components of the vehicle	Functional	Inspection
The Internal Structures sub-system shall allow separation between motor, payload and recovery section of the vehicle.	Functional	Inspection
The Internal Structures sub-system shall withstand the weight of the propulsion system [64 lbs] and the payloads [10 lbs]	Functional	Analysis



Internal Structures Technical Performance Measures

Measure	TPM Value	Units	Verification Methods
Total Compression Loads	16,941.311	psi	Force Calculator (Aero Loads)
Snatch Force	1,260.283 (No S.F) 1,953.439 (S.F 1.55)	lbf	Force Calculator (Snatch Force)
M1 Bending Max M2 Bending Max	-3,726.961 5,742.241	psi	Far Force Calculator (Aero Forces)
G Force	2.84	G's	Open Rocket
Shear Force (V1) Shear Force (V2)	67.690 221.527	lbf	Force Calculator (Aero Force Loads)
Bearing Stress (Tensile)	2,367.805	psi	Force Calculator (bolt sizing)
Bearing Stress (Compression)	68,105.684		
	KXR FAR10k Liqui	d 2024	

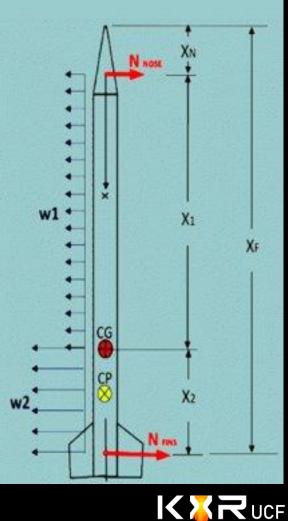
Internal Structures Component Breakdown

Κ

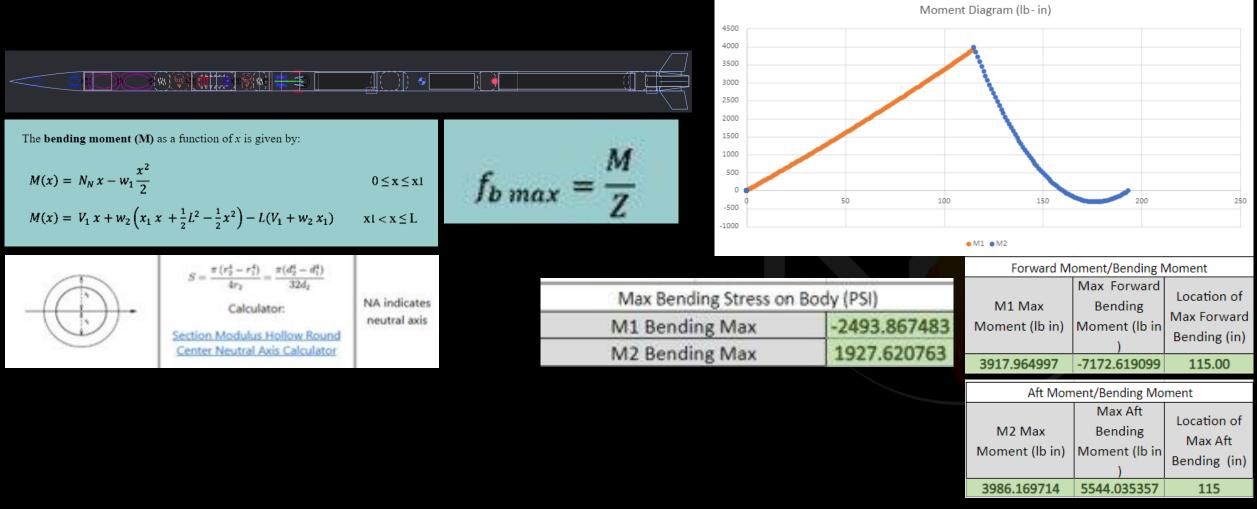
UCF

Chassis Technical Performance Measures

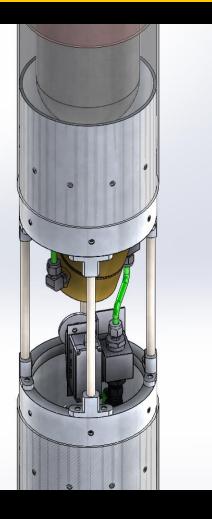
Measure	TPM Value	Units	Verification Methods
Total Compression Loads	16,941.311	psi	Force Calculator (Aero Loads)
Snatch Force	1,260.283 (No S.F) 1,953.439 (S.F 1.55)	lbf	Force Calculator (Snatch Force)
M1 Bending Max M2 Bending Max	-3,726.961 5,742.241	psi	Far Force Calculator (Aero Forces)
G Force	4.24	G's	Open Rocket
Shear Force (V1) Shear Force (V2)	67.690 221.527	lbf	Force Calculator (Aero Force Loads)
Bearing Stress (Tensile) Bearing Stress (Compression)	2,367.805 68,105.684	psi	Force Calculator (bolt sizing)



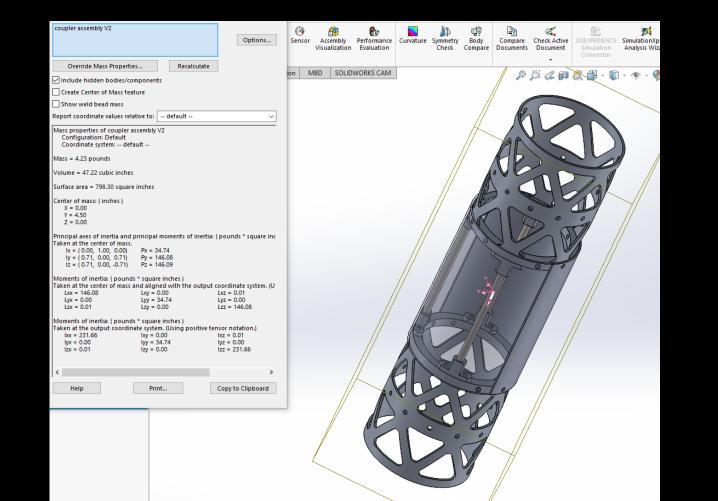
Airframe Shear Stress


Equations from Nakka rocketry assume a distributed load acting on the body during flight.

$$w_{2} = \frac{N_{F}(2x_{2} + x_{1}) - N_{N} x_{1}}{x_{2}^{2} + x_{1} x_{2}}$$
$$w_{1} = \frac{N_{N} + N_{F} - w_{2} x_{2}}{x_{1}}$$
$$V(x) = N_{N} - w_{1} x \qquad 0 \le x \le x I$$
$$V(x) = V_{1} - w_{2}(x - x_{1}) \qquad x I < x \le L$$

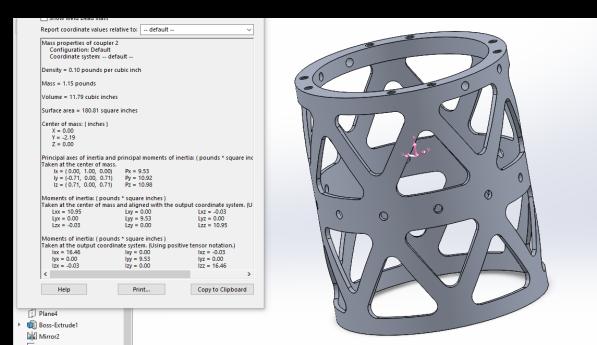


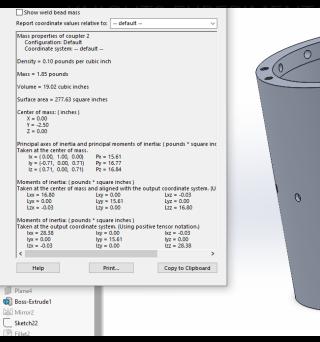
Airframe Bending Stress

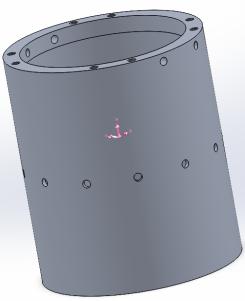

Chassis

- Aluminum Coupling Section goes between the nitrogen tank and the fuel tank
- 8" long steel threaded rods provide an opening for access to regulator to avoid moving the entire tube and wearing out threads
- Aero panels can cover up the exposed plumbing and take little load during flight
- The panels will be made out of 3D printed polycarbonate

Design Evolution



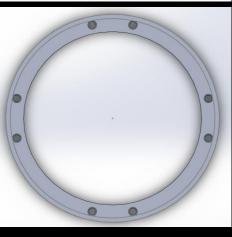




Weight Loss

- Original: 1.85 lbsLightened: 1.15 lbs
- Weight loss of 0.7 lbs per coupler, or 40%
 Adds up to almost 3 lbs across all couplers





KXR FAR10k Liquid 2024

Chassis

ltem	Material	Stock and Machining Costs	Quantity	Total	Resource	
Chassis	6061 T6 Aluminum	\$75 for stock 3 hours per coupler \$35 hourly	1	Estimated \$360	Quotes provided by UCF Machine Shop	R
3/8" threaded rods	Steel	\$4.24	4	Estimated \$18	https://www.homede pot.com/p/5-8-in-11- tpi-x-12-in-Zinc- Plated-Threaded- Rod- 802017/204274006	

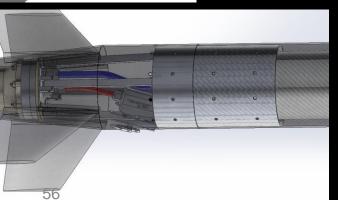
KXR FAR10k Liquid 2024

FMECA

Part	Failure	Criticality	Effect	Mitigation
Coupler Tube	Bolt tear out	High	Joined sections of the airframe come apart during flight	6" shoulder length on carbon tubes
Coupler Tube	Bearing Stress	High	Bolt connections become loose during flight	Bigger bolts and better material for those bolts
Threaded Rods	Buckling	High	Component bends and fails during flight	Using different strut geometry, increasing the number of threaded rods or the diameter
All	Galvanic corrosion	High KXR FAR10k Liquid 2024	Oxidizes the Aluminum	We will apply a coat to the Aluminum to stop the corrosion

54

Thrust Plate TPMs

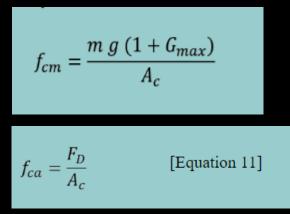

Measure	TPM Value	Units	Verification Methods	
Total Compression Loads	16,941.311	psi	Force Calculator (Aero Loads)	
Snatch Force	1,260.283 (No S.F) 1,953.439 (S.F 1.55)	lbf	Force Calculator (Snatch Force)	CKET
G Force	2.84	G's	Open Rocket	
Thrust Force	539.991	lbf	Force Calculator (Aero Force Loads)	at U
Bearing Stress (Tensile) Bearing Stress (Compression)	2,367.805 68.105.684	psi	Force Calculator (bolt sizing)	
Shear Stress (Tensile) Shear Stress (Compression)	1,396.641 15,234.508	psi	Force Calculator (bolt sizing)	

Thrust Plate

- Thrust Plate interfaces with aluminum struts coming from the injector
- Aluminum coupler tube attaches to the thrust plate in the middle to allow for attachment of the boat tail and one of the main body tubes
- The oxidizer bulkhead is attached, flushed with the thrust plate
- An indent of 3/8" is made to allow the fuel line to pass through

Thrust Plate Cost Breakdown

Part	Material	Stock and/or Machining Costs or	Quantity	Total	Link (not hyperlink)	
Thrust Plate	6061 T6 Aluminum	Estimation of 20- 35 dollars for stock 3.5 to 4 hours of machining time Hourly Machine Charges of 35 dollars	1	Estimated \$170 dollars	Quotes from UCF machine shop	ROCKETRY
Aluminum Tube (6x.125x5.75)	6061 T6 Aluminum	\$44.37	1	\$44.37	https://www.me talsdepot.com/ aluminum- products/alumi num-round- tube	at UCF


Compression and Tensile Stresses

Thrust Force (lb)			Tube oss-sectional Area (in^2)		Engine Thrust I Compression (PSI)	
539.9910	0813	1.	1.257755468		429.3291462	
	Force Drag (lb)			Tube oss-sectional Area (in^2)	Compressive Drag (PSI)	
			429.0488383		.257755468	341.1226181
	Mass (I	b)	Max Gs		Tube oss-sectional Area (in^2)	Mass inertia compression (PSI)
	145		2.84		.257755468	14243.23844
						_
Engine Thrust Compression (PSI)	Max Bending Stress on Body (PSI)		Compressive Drag (PSI)		Aass inertia ompression (PSI)	Total Compressive (PSI)
429.3291462	1927.620	0763	341.1226181	14	4243.23844	16941.31097

Main			
Snatch Force (N)	Snatch Force (lbs)	SF	Focre*SF (lbs)
5606.019256	1260.283264	1.55	1953.439059
Drouge			
Snatch Force (N)	Snatch Force (lbs)	SF	Focre*SF (lbs)
347.5449334	78.13120915	1.5	117.1968137

 Compression Loads are calculated using equations from Nakka Rocket

٠

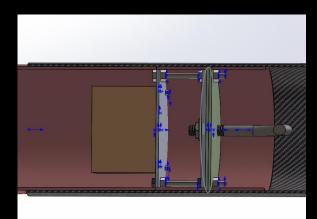
- Compressive stress due to mass inertia
- Compressive stress due to drag force

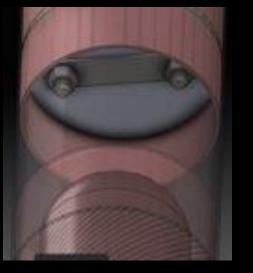
 Tensile stress from snatch force during recovery

FMECA

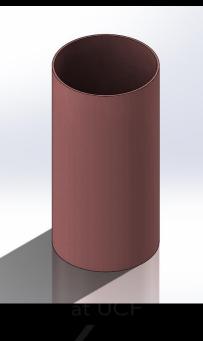
Part	Failure	Criticality	Effect	Mitigation
Coupler Tube	Bolt Shear	High	Thrust Plate and or joined sections of the airframe come apart	6" shoulder length on body tubes 3" of shoulder length into the boat tail
Coupler Tube	Bearing Stress	High	Bolt connections become loose	Bigger bolt diameter or stronger material
Thrust Plate	Bolt shear	High	Propulsion system connections become loose during flight	Using bigger bolt diameter and stronger material
Thrust Plate	Deformation	High	Propulsion system could collapse into the airframe	Adding thickness to the thrust plate or changing material

Centering Rings





- To prevent translation of the tanks and the combustion chamber centering rings will be placed around the propulsion system.
- Centering rings will be placed around the combustion chamber as well as the fuel and oxidizer tank.
- Will be cut out of plywood
- Cost: \$40 for a sheet of plywood


COTS Couplers/ Bulkheads

- Sections that won't require a chassis near the propulsion system will be joined together using fiberglass couplers
- Above the nitrogen tank, two bulkheads will secure the PCB and the ACB using fiberglass couplers and G10 plates
- These bulkheads will also be used to secure two cameras providing a horizon view during flight and a camera pointing down towards the fins

ltem	Full Item Description	Cost	Quantity	Total	Link (not hyperlink)
G12 Fiberglass coupler tube	6" fiberglass tube	\$60.00 each	2	\$120.00	https://www.co mpositewareho use.com/index. php?route=pro duct/product&p roduct_id=125

FMECA

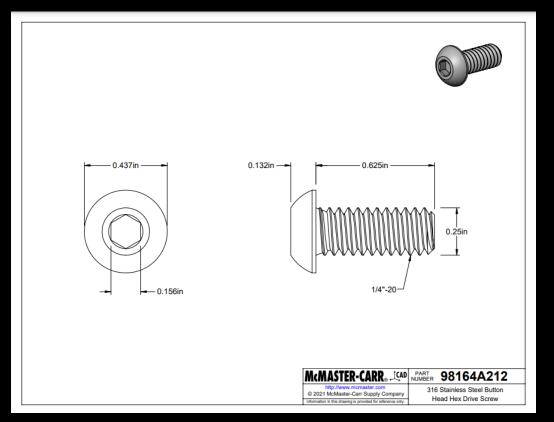
Part	Failure	Criticality	Effect	Mitigation
Centering Rings	Cracking or disassembly	Medium	Risks the propulsion system sloshing inside the airframe	Multiple centering rings and/or thicker wood
Bulkeads	Cracking or disassembly	Medium	PCB, ACB, and cameras could risk collapsing inside the airframe	Using larger bolts to support the bulkhead

Bolt Bearing Stress

Compressive Loads Aluminium

Bearing Stress	Saftey Factor	
(psi)	Salley Factor	
68185.68485	0.527970058	

Tensile Loads Aluminium

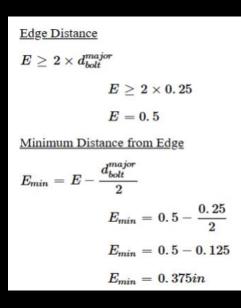

Bearing Stress (psi)	Saftey Factor	
2367.80492	15.20395523	

Bolt		
Bolt Type	Wall thickness (in)	SF of Bolts
1/4 - 20	0.2	1.75

Airframe will be secured using 10 ¹/₄-20 steel bolts at all jointing sections.

$$f_{br} \leq \frac{S_{br}}{S.F.}$$

$$f_{br=} \frac{F_s}{D_m t}$$



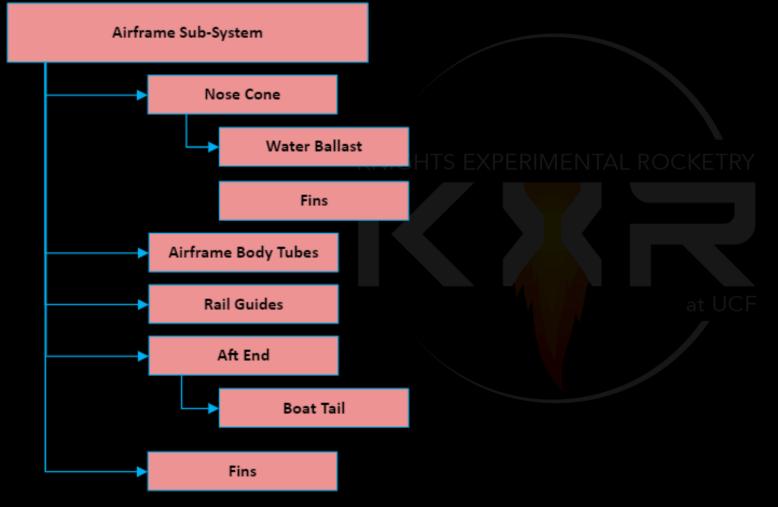
Bolt Tear Out

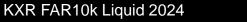
				_		
E	Bolt Diame	ter (in)			Edge distance (in)	
	0.25				0.5	
						(
E	Bolt Diame	ter (in)		Ν	Ainimum Edge distance (in)	(
	0.25				0.375	
Cor	npressive	Loads Bo	olts			
Number of Bolts	Num Bolts With SF	Num of Bolts to even Number			$F_{max} = f \frac{M}{D}$	
6.165516932	10.78965463	10				
					f = 2/5 for ten fasteners	
Shear Stress Per Bolt (PSI)	Shear Force per Bolt (lb)	SF of Bolts			Shear Stress Average = Applied Force / Area or	
15234.50842	2130.802652	1.62192402			Shear Stress ave.= $F/(\pi r^2)$	
	Tensile Loa	ds Bolts			or Shear Stress ave.= 4F/(πd ²)	
Number of Bolts	Num Bolts With SF	Num of Bolts to even Number			Where: F _{bulk}	
0.565231209	0.989154616	1			Max # of bolts: $n_{bolts} = \frac{r_{bulk}}{r_{bolts}^{max}}$	=
					bolt	
Shear Stress Per Bolt (BSI)	Shear Force per Bolt (lb)	SF of Bolts			Max Force one bolt can take: $F_{bolt}^{max} = \tau_u \cdot A_b$	olt

1396.641954 195.3439059 17.69187518

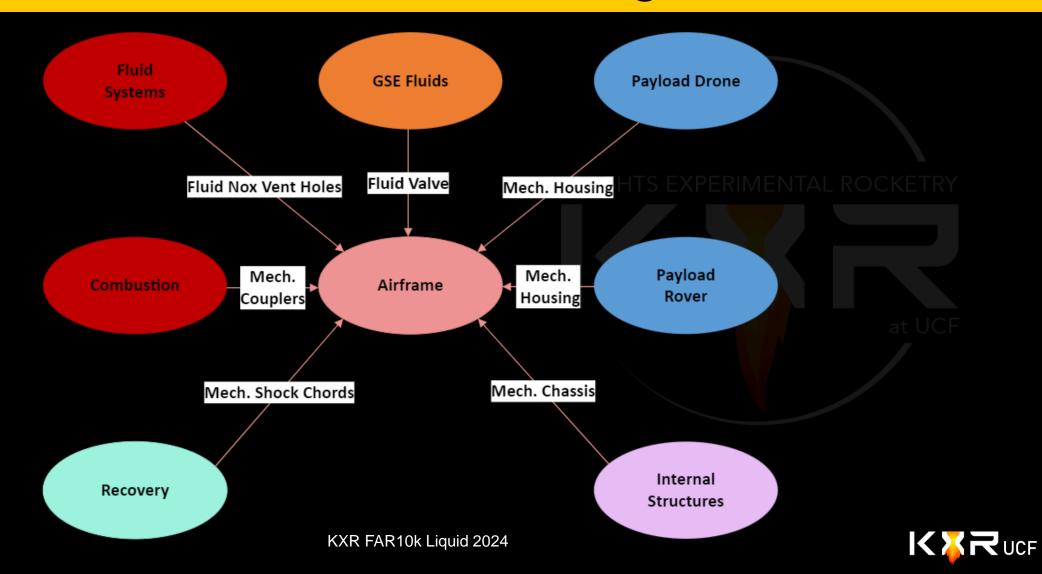
Minimum Edge distance was • calculated for aluminum couplers on the chassis and on the aft end

KXR FAR10k Liquid 2024


Internal Manufacturing


- Chassis
 - Will purchase stainless steel threaded rods, which we will cut to specified lengths
 - The coupler adapter ("feet") of the struts will be machined out of 6061 aluminum in the machine shop
 - 6 hours to machine
 - 8 pieces in total
- Thrust Plates
 - Will be machined out of 6061 aluminum in the machine shop
- Bulkhead Rings
 - Will be made from COTS G12 couplers
 - We will cut the rings from the coupler and post-process as necessary

KNIGHTS EXPERIMENTAL ROCKETRY

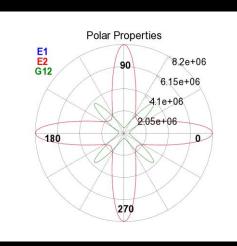


Airframe Component Breakdown

Airframe Interface Diagram

Airframe Functional Requirements

Requirement	Requirement Type	Verification Method	
The Airframe Sub-system will be optimized for transonic speeds	Functional	Analysis	RIMENTAL ROCKETRY
The Airframe Sub-system will provide stability in flight	Functional	Analysis	at UCF
The Airframe Sub-system will withstand flight loads	Functional	Analysis	


Airframe TPMS

Measure	TPM Value	Units	Verification Method
Snatch Force	1954	lbf	Demonstration
Max Bending Moment	7173	lb-in	Analysis
Max Compressive Load	21309	lbf	Analysis
Lateral Shear	122	lbf	Analysis
Drag Coefficient	0.75	n/a	Analysis
Vibrations (Flutter)	3120	ft/s	Test/Analysis

External Structures Lay-Up

- Body Tubes, Boat Tail & Fins: 3K 2x2 twill weave prepreg carbon fiber
- Nose Cone: Wet-Lay Fiberglass Sleeves
- Methods of calculations : The Laminator, Classical lamination theory, Force Calculator
- Simulation: Ansys ACP

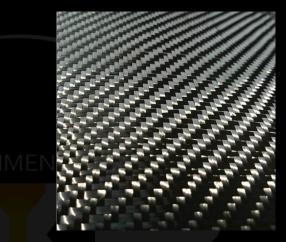
Jolar	Material	Properties

👷 Analysis	Analysis Results								
(For	Load Vector Scale Factors for Ply Failure (For Applied (+) and Reversed (-) Loads)								
	Max	Max	Tsai						
Layer	Stress	Strain	Hill	Hoffman	Tsai-Wu				
	(+)	(+)	(+)	(+)	(+)				
1	4.98	4.98	4.98	4.98	4.98				
2	4.98	4.98	4.98	4.98	4.98				
3	4.98	4.98	4.98	4.98	4.98				
4	4.98	4.98	4.98	4.98	4.98				
5	4.98	4.98	4.98	4.98	4.98				
6	4.98	4.98	4.98	4.98	4.98				
Min	4.98	4.98	4.98	4.98	4.98				
	Max	Max	Tsai						
Layer	Stress	Strain	Hill	Hoffman	Tsai-Wu				
	(-)	(-)	(-)	(-)	(-)				
1	-5.30	-5.30	-5.31	-5.31	-5.31				
2	-5.30	-5.30	-5.31	-5.31	-5.31				
3	-5.30	-5.30	-5.31	-5.31	-5.31				
4	-5.30	-5.30	-5.31	-5.31	-5.31				
5	-5.30	-5.30	-5.31	-5.31	-5.31				
6	-5.30	-5.30	-5.31	-5.31	-5.31				
Min	-5.30	-5.30	-5.31	-5.31	-5.31				

The laminator F.S

Rock West COMPOSITES Prepreg - Carbon Fiber + 250F Epoxy - 39.4" Wide X 0.011" Thick - Standard Modulus - 3k 2x2 Twill Weave - (366 Gsm OAW) P/N 14033-D-GROUP Overview (Features & Benefits) (Product Specifications) (Additional Information) (Technical Data 250F RESIN • 2X2 TWILL WEAVE • 0.011" THICK • 39.4" (B) (B) (100CM) WIDE 6" x 6" Swatch . Ships Insulated & Frozen Sku: 14033-SAMPLE \$28.99 Linear Yard x Roll Width Provided In Continuous Length \$65.59 \$62.39

KXR FAR10k Liquid 2024

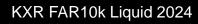

External Structures Lay-Up

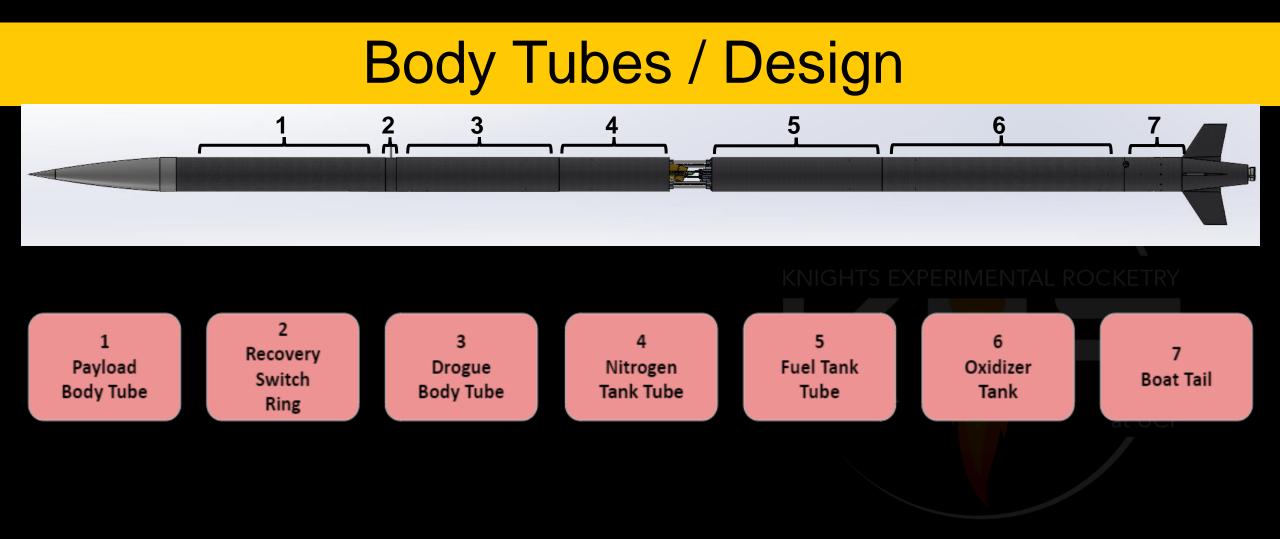
ltem	Number of Plies	Ply Orientation	Method	Raw Composites Cost
Body Tubes	6	0	Rolling	\$1277
Coupler Aero covers "skins"	2	0	Rolling	(integrated in Body tubes)
Nose Cone	6	45/45	Sleeves	\$74.9
Boat Tail	8	0	Rolling	\$234
Fins	24	0	Hand Laying	\$399
Total (+ Tax & Handling)	-	-	-	\$2310

Edge Distance S.F:

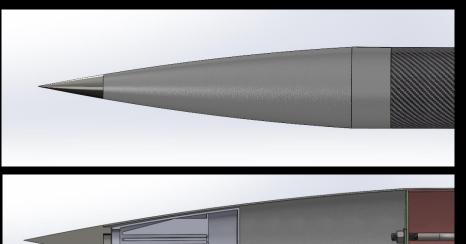
= 3in / 0.375in = 8

= Distance / Minimum Safe distance

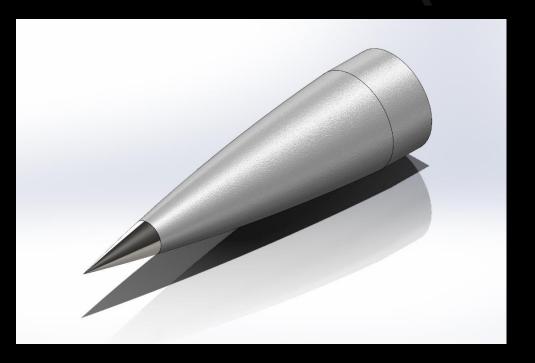



3k 2x2 Twill CF

Bi-Axial FG Sleeve


Body Tube FMECA

Part	Failure	Criticality	Effect	Mitigation
Body Tubes/Nose Cone/ Boat tail/ fins	Structural Failure	High	Complete Mission Failure	Verify Layup and add SF as well as coupon testing
Body Tubes / Nose Cone / Boat Tail	Bolt Shear/ Tear out	High	Complete Mission Failure	Optimize the bolt locations



Nose Cone

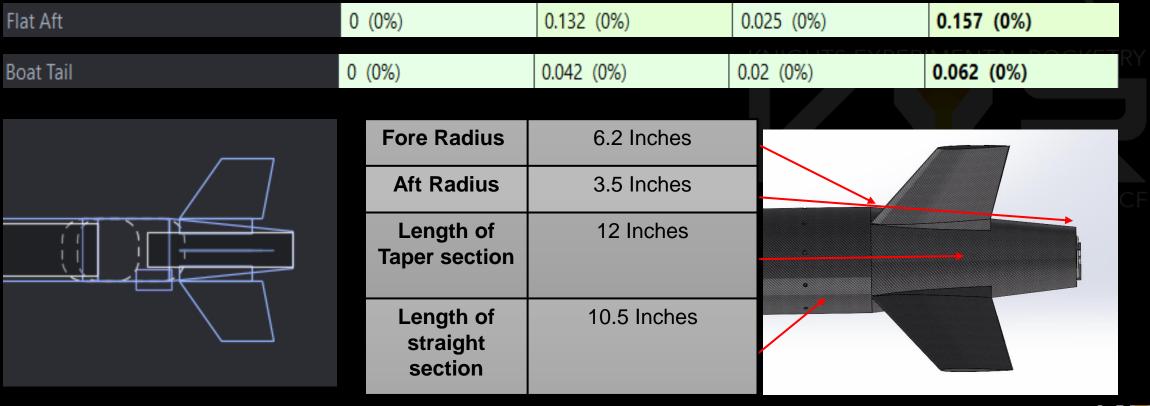
- Parabolic Nose Cone
 - Achieved lowest coefficient of drag between Fluent & OpenRocket with ${\rm K}=0.7$
- Steel Tip
 - Higher density than aluminum adds more stability
 - 1.56 lb

For
$$0 \le K' \le 1$$
: $y = R\left(\frac{2\left(\frac{x}{L}\right) - K'\left(\frac{x}{L}\right)^2}{2 - K'}\right)$ $\begin{array}{c} \mathsf{R} = 3.1 \text{ in} \\ \mathsf{L} = 24 \text{ in} \\ \mathsf{K} = 0.7 \end{array}$

Nose Cone TPM

Measure	TPM Value	Unit	Verification Method
Dynamic Pressure	4.1	psi	Force Calculator
Normal Force	30.37	lbf	Force Calculator
Total Drag	96.45	lbf	Force Calculator / ANSYS
Bolt Tear Out (Min-Safe-Distance)	2	in	Force Calculator
Total Compressive Force	371	lbf	Force Calculator

$$Q = \frac{1}{2} * Rho * V^{2}{}_{Max}$$
$$N_{NOSE} = q A \alpha (C_{N \alpha})_{N}$$
$$at UCF$$
$$D = \frac{1}{2} C_{D} \rho v^{2} A_{ref}$$


Nose Cone FMECA

Part	Failure	Criticality	Effect	Mitigation
Nose Cone	Fail to reduce drag	Low	Rocket doesn't reach estimated apogee	Keep iterating to produce the most optimized nose cone shape
Nose Cone	Crumples due to compressive load	High	Rockets drag is significantly increased	Design thickness according to calculations with a safety factor
Nose Cone	Breaks on landing impact	Medium	No more re- flyability (Point loss)	Design it to withstand impact with a safety factor

Boat Tail

- Lowest drag coefficient out of all three possible geometries.
 - The boat tail decreases our drag coefficient by 0.095.

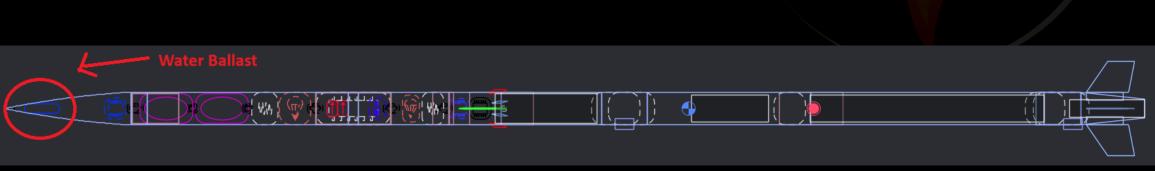
FMECA

Part	Failure	Criticality	Effect	Mitigation
Boat Tail	Fail to reduce drag	Low	Rocket doesn't reach estimated apogee	Keep iterating to produce the most optimized aft end shape
Boat Tail	Breaks upon ground impact	Medium	Rocket no longer has re-flyability (Point Loss)	Design to withstand ground impact with safety factor

Water Ballast

Function/ Performance:

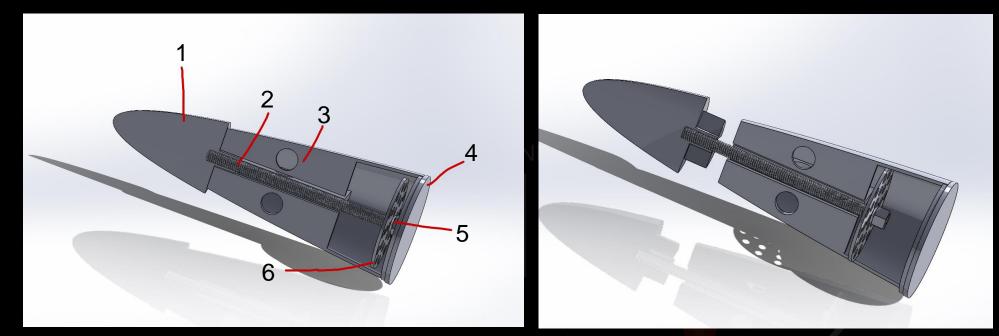
- Add weight for ascent
- Removed at descent or apogee
- Gain 1000 points
- Threaded Rod should sustain snatch force


Characteristics – TPM values:

- 500ml of water (1.1 lbs)
- Nose Cone Tip Weight (~1.6 lbs)

Geometry

 We're pursuing a trans-sonic and subsonic design until we get our actual values.

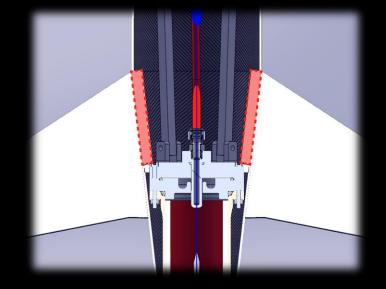

KNIGHTS EXPERIMENTAL ROCKETRY

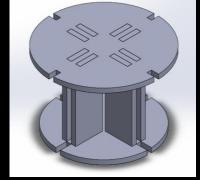
Water Ballast (cont'd)

Parts: 1 – Nose Cone Tip 2 – Threaded Rod 3 - Baffles 4 - Lid 5 – Lock Nut 6 – Mesh Plate

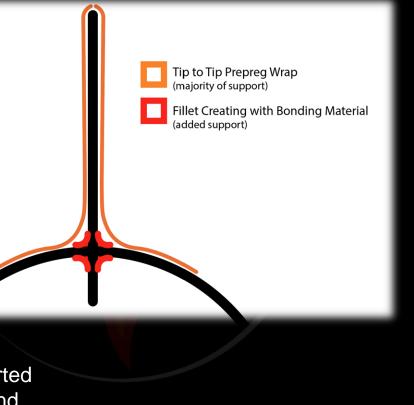
Materials: Polycarbonate 3d print for Water containment portion

- Threaded rod
- Lock nut
- Nose cone tip made of steel


Water Ballast FMECA

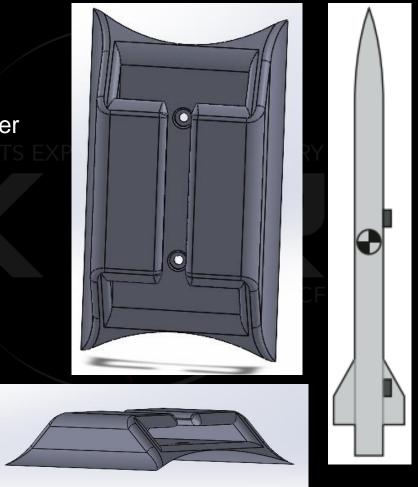

Part	Failure	Criticality	Effect	Mitigation
Nose Cone Tip	Fails to Detach	Low	Water fails to release	Tolerance between nose cone tip and water ballast is increased
Baffles	Threaded Rod crushes baffles	Low	Baffles are damaged	Baffle Width is increased
Lid	Fails to seal water	Low	Chance of damaging electronics	Epoxy is used to seal the Water Containment
Mesh	Mesh breaks	High	The nose cone tip can separate from the main rocket creating a safety problem	Mesh becomes thicker.

Fin Cage Component Breakdown


- Our rocket will alternatively use fillets on each corner of contact for the fin tabs, as well as tip to tip pre preg wrap to support each fin
- This decision was made for the sake of simpler integration with the CC and thrust plate
- A support will be made and laser cut for holding the fins in place while they cure, then will be removed.

Fin tabs are inserted into an internal and external centering jig for manufacturing

KXR FAR10k Liquid 2024



Rail Guides Component Breakdown

Function/ Performance:

- Hold rocket to rail
 - Supports rocket so stability can effectively develop
 - Prevents any misalignment of trajectory during launch
- Permanent feature, now a part of rocket and influences flight character
- Upstream guide: ~115 inches from the nose tip
- Downstream guide: ~205 inches from the nose tip

ltem	Full Item Description	Cost	Qua ntity	Total	Link (not hyperlink)
Polycarbonate filament	Black PC Filament <u>1.75 mm</u> 3D Printer Filament 1 KG Spool 2.2LBS	\$25	2	\$50	CC3D global
	Dimensional Accuracy +/- 0.05mm 3D Printing Polycarbonate Material				
Screws	Alloy steel socket head screws.1-72.	\$7.23	1	\$7.2	McMaster-
	Item number 91251A068			3	Carr
nuts	High strength steel hex nuts. Item	\$10.9	1	10.9	McMaster-
	number 94895A815	2		2	Carr
Graphene powder	Lucky Line 4.5 Grams of Dry Lock Lubricant Graphite Powder for Pin Tumbler Locks, 1 Tube (95001)	\$3	2	\$ 6	Lucky Line

Rail Guides Component Breakdown

A: Static Structural Maximum Principal Stress

11/28/2023 1:35 AM

6.3371e7

5.5185e7

4.6998e7

3.8812e7

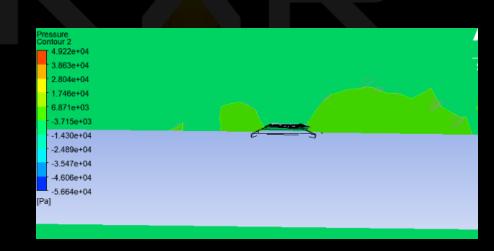
3.0625e7 2.2439e7 1.4253e7 6.0662e6 -**2.1202e6 Min**

7.1557e7 Max

Unit: Pa

Time: 1 s

Type: Maximum Principal Stress


Designed and evaluated at 600lbs

Estimated Factor of Safety of 2.78

 $P_f L_f + P_a L_a - \mu \left| P_f + P_a \right| R_T = 0$

• Back plate will be utilized

Measure	TPM Value	Units	Verification Method
Resisted launch force	600	lbf	Testing
Mount length	4	inches	Demonstration
Mount height	1	inches	Demonstration
Drag from mount	4000	Pa	Analysis

3.934e+04

2.788e+04

1.643e+04

4.971e+03

-6.484e+03

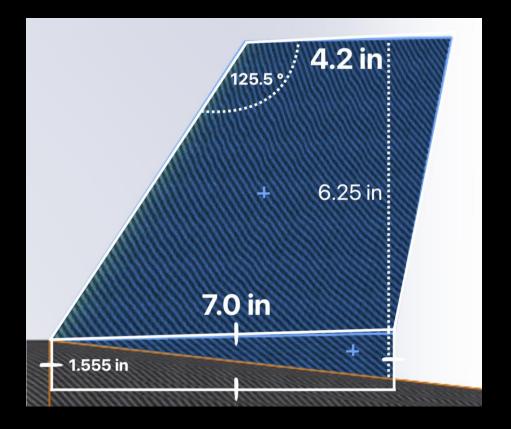
-2.940e+04

-4.085e+04

-5.231e+04

6.376e+04

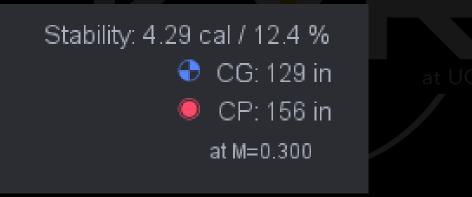
7.522e+04



FMECA

Part	Failure	Criticality	Effect	Mitigation
Bolt	Bolt tear out	High	Rail guides shear off, rocket fails to develop stability. Launch failure	Choose bolts with high strengths, design guides to be thick on face with rocket. Employ back plate
Rail guides	Flange failure	High	Rail flanges tear off, rocket fails to develop stability. Launch failure	Thicken flanges to withstand high safety factor

Fins

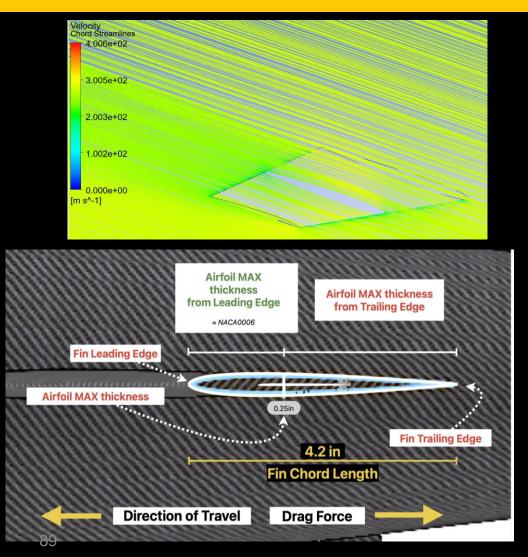


Function/ Performance:

- Shall resist all loads and vibrations experienced in flight.
- The fins shall provide passive stability to the vehicle.

Characteristics – TPM values:

- Pressure [11.66 psi]
- Fin flutter velocity [3055 ft/s] safety factor of [3.92]



Fins

Part	Failure	Criticality	Effect	Mitigation
Fin	Flutter	High	Vibration	Make thicker/Shorter
Fin	Drag	Low	Decreased Apogee	Airfoil
Airfoil	Manufacturing	Medium	Time/Budget	Tolerance

Airfoil

Function/ Performance:

 Airfoil should minimize the aerodynamic forces acting on the vehicle.

Characteristics – TPM values:

- Pressure [11.66 psi]
- Fin flutter velocity [3055 ft/s] safety factor of [3.92]

Drag coefficient	Value	
Pressure Cd	1.15E-04	
Viscous Cd	1.51E-04	at UCF
Total (drag) Cd	2.66E-04	

 $y_t = 5t \left[0.2969 \sqrt{x} - 0.1260 x - 0.3516 x^2 + 0.2843 x^3 - 0.1015 x^4
ight],^{[5][6]}$

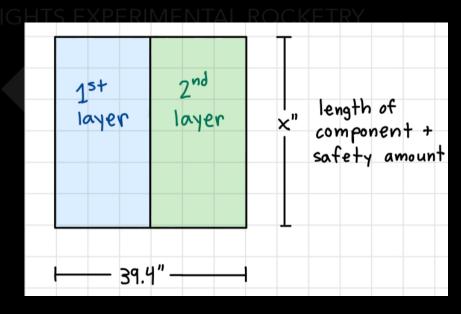
where:

x is the position along the chord from 0 to 1.00 (0 to 100%),

 y_t is the half thickness at a given value of x (centerline to surface),

t is the maximum thickness as a fraction of the chord (so t gives the last two digits in the NACA 4-digit denomination divided by 100).

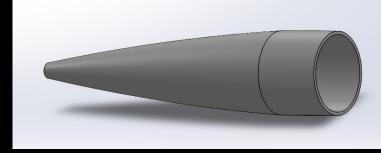
KXR FAR10k Liquid 2024



Airframe Manufacturing

Tubes

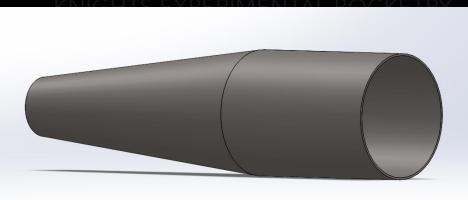
- Made of 3k 2x2 twill weave prepreg carbon fiber
- Roll the prepreg around a 6 in. metal mandril to build up layers and form the tube
 - Width of pre-preg is 39.4 in, which is twice the circumference, so one sheet will have 2 layers
 - Roll 3 sheets in total to make 6 plys
- Cure tube in autoclave and post-process as necessary
- Will need to manufacture 5 separate tubes*
 - Payload body tube: 38 inches
 - Recovery switch band: 2 inches
 - Lower recovery tube: 27 inches
 - N tank tube: 19 inches
 - Fuel tube: 31 inches
 - OX tube: 44 inches



*the recovery switch band (length/material) will be added and cut from the lower recovery tube piece

Airframe Manufacturing Contd.

- Nose Cone
 - Mold: Male mold; 3D-printed out of PLA plastic with extra length on ends as safety factor for material
 - Will take about 5 days to print
 - Will be printed in separate sections due to the size constraints of the 3D printer
 - These will be glued together, most likely with E6000
 - Wet-lay fiberglass sleeves over the 3D-printed male mold, according to lay-up schedule
 - Composite will be vacuumed and sealed in Autoclave
- Tip machined from 2 in. diameter steel rod
 - Will take 1-2 days to machine
- Water Ballast
 - 3D printed out of PLA
 - Will take only a few hours to print
 - The COTS threaded rod will be cut to size by us ₉₁ KXR FAR10k Liquid 2024

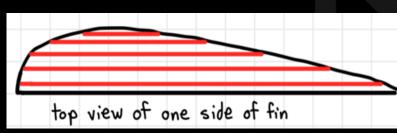


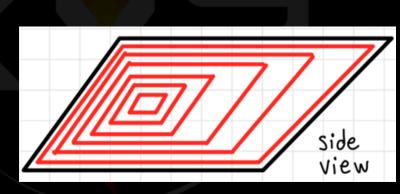
Airframe Manufacturing contd.

Boat Tail

- Made from carbon fiber pre-preg
 - Will 3D print a male mold out of polycarbonate plastic (PCP)
 - It will be 3D printed in separate sections due to size constraints of the 3D printer, glued together most likely with a high temp. epoxy
- Will need to apply 8 layers of prepreg
 - Cure composite in the autoclave
- Then, insert the fins with epoxy and fillet them to the tail cone
 - May need a high temp epoxy/glue

• Then the tail cone will go back into the autoclave and cure to cement the fins in place


Airframe Manufacturing Contd.

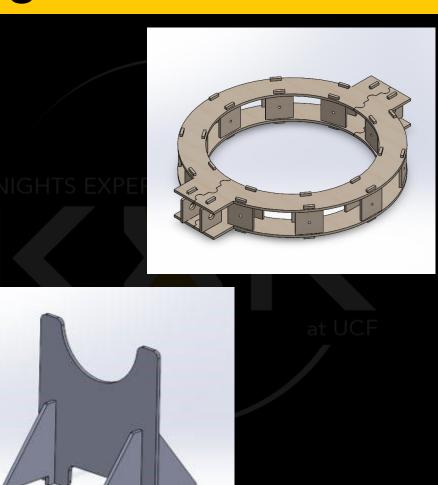

• Fin Cage

- The material will be G10 fiberglass
 - The parts will be laser cut at a fabrication center and then assembled by us

• Fins

- Will be tapered, swept, trapezoidal and made from layered pre-preg
 - There will be a total of four fins.
 - The measurements are as follows:
 - Root chord 7.5in
 - Tip chord 5in
 - Height 5in
 - Swept length 2.5in
 - Sweep angle 26.5in
- The airfoil will be NACA0006
- The pre-preg will be cut to different lengths and shapes which will be stacked up to form the airfoil
 - This layering technique will be done for each side of the fin

KXR FAR10k Liquid 2024


Airframe Manufacturing Contd.

Holes

• We will be using the drilling collar to make our holes even spaced and the correct size

• Jigs

- For drilling we have a drilling collar made from plywood
- The drilling collar will double as our cutting collar
- The rocket stands will be made from plywood and cut with the laser cutter in the TI Lab
- Rail Guides
 - 3D printed out of polycarbonate plastic

Manufacturing Process Plan (MPP)

			Read the instructions on the		DO NOT MIX the resin
			Epoxy/Resin label to find the		and hardner until you are
			proper mixing ratios. Follow the		ready to lay. Be ready to
			instructions to a tee to ensure best		work quickly from this
			results. Mix your Epoxy/Resin ONE	gloves,	point on, the Epoxy/Resin
			LAYER AT A TIME. eg. mix epoxy for	goggles, respirator,	will cure quickly so be
			layer 1, lay fiberglass+epoxy for	popsicle sticks,	sure to have your
		Epoxy/ Resin components	layer 1. Then mix and lay for layer	Epoxy/Resin, mixing	fiberglass and mold ready
Mix Epoxy/Resin for Layer 1	4	are mixed to the proper ratio	2, etc.	cups	to rock.
				gloves, goggles,	
			Apply a layer of resin to the mold to	respirator, mixed	
			seal any tiny pores or gaps in the	Epoxy/Resin, paint	Especially necessary if
Seal Mold	5	Seal mold with layer of resin	material before laying fiberglass.	brush	chosen mold is wood.
			Lay material on top of first resin		
			coat, ensure it's laid in the correct		
		Material is oriented correct,	direction, smooth out the material	1st layer of fiberglass,	
Lay First Layer of Material	6	no bubbles	with gloved hands	gloves	
					The exoxy/resin mix
					should be a specific
					amount proportional to
					the amount of material
					being covered. Use
		Even layer coats entire	Use paint brushes to evenly coat the	epoxy/resin mix, gloves,	expocy calcultor to
Apply Epoxy/Resin Mix	7	surface of material	material with the resin mixture.	paint brushes	calculate amount of mix
Repeat steps 10-11	8		Repeat steps 10-11 until all layers are	e complete	

	-	6 plys of carbon fiber	Apply each layer in	PrePreg Carbon	If carbon fiber bubbles	П
Apply Carbon Fiber Prepreg	4	prepreg must be applied	the same direction	Fiber, Scissors,	or wrinkles, remove	
		prepreg must be applied	the same unection	Gloves	said ply and start again	
Apply release film over		1 layer of release film	Must be even and	Release film,		
carbon fiber	5	must be evenly placed on wrinkle free	scissors			
carbon nbei		carbon fiber surfaces	winklence	30133013		Ц
		Wrap liberal amount of	Must cover entirty of	Breather cloth.		
Apply breather cloth over	6	breather cloth over	the mandrel	scissors		
		composite surface		56155615		Ľ
Vaccum Bag entire mandrel	7	Create an envelope bag	Bag must be totally	Vacuum bag,		
		with gum tape and insert sealed		vacuum sealent		
		test coupon	sealeu	tape, scissors		
	8	Place vacuum connector	Bag must be totally	Vacuum		П
Insert Vacuum Connector		through bag	sealed	connector,		
		tinough bag	sealeu	Scissors		Ľ
Pull Vacuum in Autoclave	9	Pull 1 atmosphere of	Ensure vacuum holds	Autoclave		
Tuil Vacualit in Autoclave	<i>,</i>	vacuum pressure		Autoclave		L
Cure tube in Autoclave	10	Run cure cycle	Cure for 1 hour at	Autoclave		
	10		250F	Autociave		Ľ
			Ensure all breather			
Remove Vacuum supplies	11	Cut test coupon out of	cloth and vacuum	Scissors		1
Nemove vacuum supplies	11	vacuum bag		30135015		1
			supplies are removed			1

Steps 4 - 8 of Fiberglass Coupon for nose cone

Steps 4 – 11 of Carbon Fiber prepreg coupons for tubes and tail cone

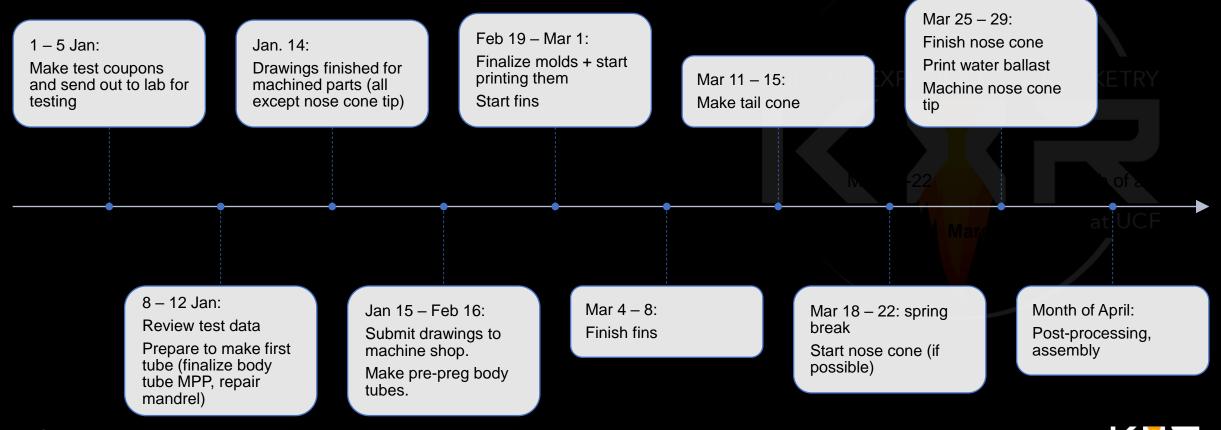
- All the test coupon MPPs are finished, except for the fins' coupon, which is still being fleshed out. These MMPs include:
 - Body tube test coupon
 - Tail Cone test coupon
 - Nose Cone test coupon
- 95 Fin test coupon

Machine Costs and Printing Times

Nose Cone

- Mold: 5 days to 3D print*
- Water Ballast: a few hours to 3D print*
- Nose Cone Tip: 2-3 hours to machine, the material is free. Total cost is < \$100.
- Tail Cone
 - Mold will take 4 days to 3D print*
- Chassis
 - 10 hours to machine
 - Material cost \$150
 - Total cost to manufacture is \$500
- Thrust Plate
 - 3.5 hours to machine
 - Will cost \$158

*only cost is for filament, between \$30-40


KNIGHTS EXPERIMENTAL ROCKETRY

Manufacturing Schedule

- Largely dependent on when materials arrive
 - Best case Jan. Apr., worst case Jan. May.

Questions?

CAD and Open Rocket KXR FAR10k Liquid 2024

