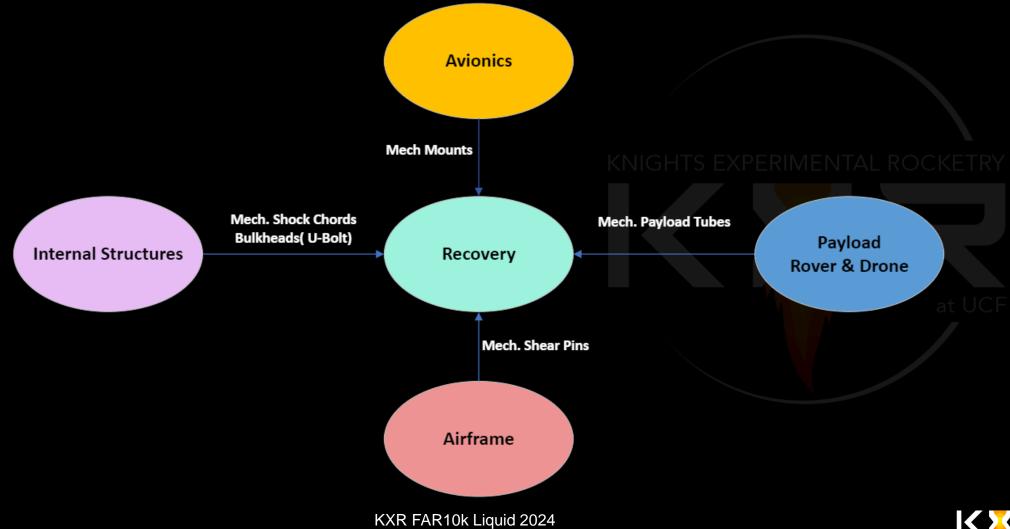


Aerostructures System

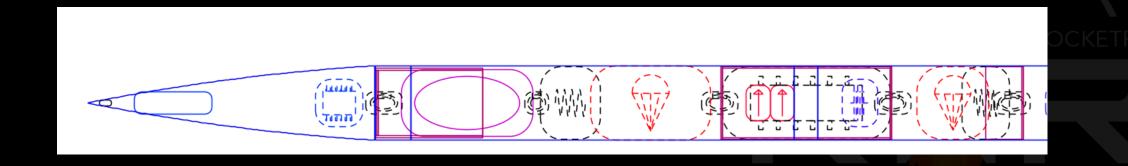


Recovery Component Breakdown

Recovery Interface Diagram

Recovery Functional Requirements

Requirement	Requirement Type	Verification Method
The Recovery System shall have redundancy	Functional	Demonstration
The Recovery System shall be visible during descent	Functional	Demonstration
The Recovery System shall have a dual-deploy system	Functional	Inspection
The Recovery System will create a safe controlled descent for the vehicle	Functional	Demonstration



Recovery TPM's

Measure	TPM Value	Units	Verification Method
Snatch Force	1953.439059	Lbs.	Demonstration
Size of Recovery compartment	36" main+11" drogue	in	Inspection
Packing Length of Chutes	10 and 6	cu. in.	Inspection
Descent Rate	D: [75] M: [20]	Ft/s	Test
Shock Chord Length	1345	In	Inspection

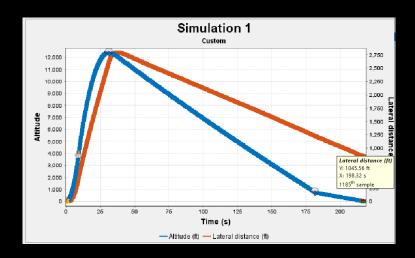
Recovery Breakdown



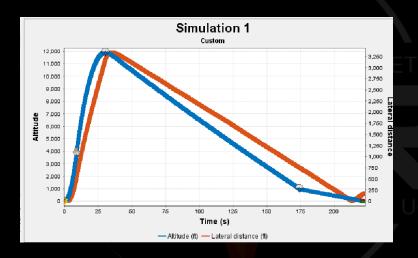
Recovery Analysis

- 210s total flight time
- Drogue Descent velocity at 65 ftps
- Main descent velocity at 22 ftps

 Drift expected within a ~1000 ft ellipse with windspeed at 13mph. Actual drift can be calculated at the site depending on exact rail angle, direction and wind speed



Parachute Drift Analysis


According to National Oceanic and Atmospheric Association, for **Mojave, CA**:

- Max Windspeed 13mph
- Average Windspeed 7mph

Average Windspeed:
Expected drift radius of under 1000 ft with wind conditions of 7.5mph

Both drift simulations take weathercocking into account with a 90* launch angle, the real radius will depend on launch angle of the rail and if the rocket remains straight off the rail

Peak Windspeed: Expected drift radius of under 500 ft with wind conditions of 13mph

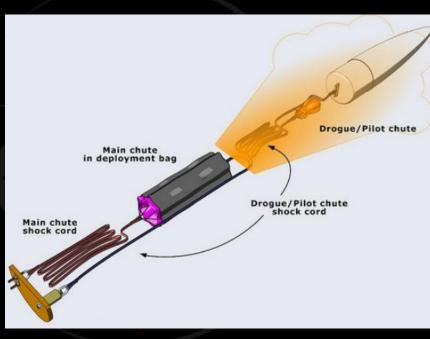
Main Chute

- ☐ We are using the Iris Ultra 120" as our main parachute
 - ☐ CD of 2.2, which gives us a final descent speed at 23.7 ftps
 - ☐ Deploys at 800ft
 - ☐ Uses 12 shroud lines [400lb Paraline]
 - ☐ Shroud line total strength: **4800 lbs**
 - ☐ 3000lb swivel
- ☐ We are using a Fruity Chutes Main Deployment Bag as our fire blanket

Drogue

48" ELLIPTICAL PARACHUTE

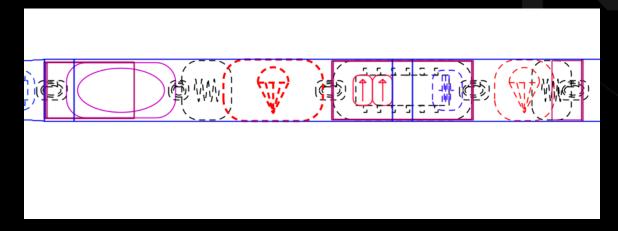
- □ Descent speed of 75fps when deployed at apogee[openrocket]
- □ Coefficient of Drag 1.55 [stated in item description]
- □ Shroud lines: 12 nylon shroud lines [rated for 400lb]
- ☐ Shroud line total strength: **4800 lbs**
- ☐ Comes with a 1500 lb swivel but we can attatch the shroud lines to a 3000lb quicklink



4" Diameter | 6" Length Deployment Bag from Fruity Chutes (recommended by fruity chutes for our drogue)

Parachute Deployment from Bag

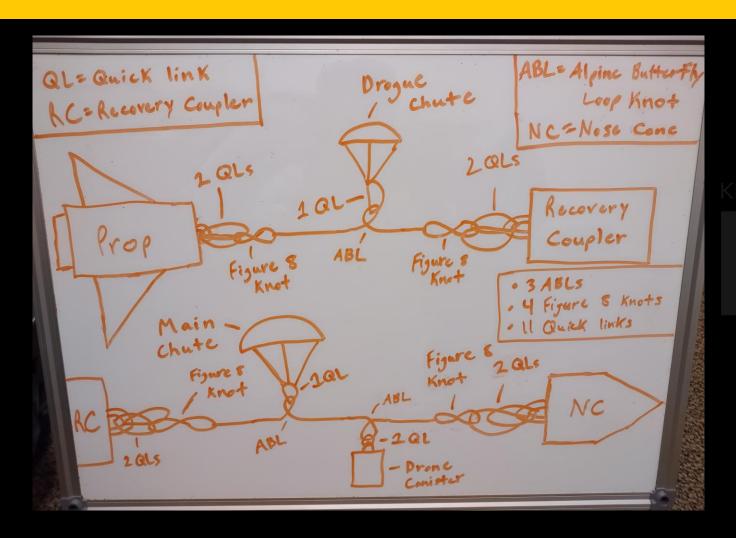
Parachute Packing lengths



Drogue chute packing volume: 6 inches in length in a 4" airframe

Main chute packing volume:

10 inches in length in a 5.5" airframe



FMECA

Part	Failure	Criticality	Effect	Mitigation
Shock Cords	Snap	High	No Controlled Descent	Apply Safety Factor
Quick Links	Snap	High	No Controlled Descent	Apply Safety Factor
Shock Cords	Snap due to stress caused by heat	High	No Controlled Descent	Kevlar Shock Cord (heat resistant)
Shock Cords	Tangling With Payloads	High	Damage to the Rocket	Rail System for Payload
Shock Cords	Tearing through Airframe	High	cord breaks or vehicle is no longer in recoverable condition	 place duct tape where the cord will "rub" up against the carbon tube
Shock Cords	Improper Shock Cord Lengths	Medium	Damage to the Rocket	Verify Lengths via Testing prototype

Shock Cords

The recovery system will contain:

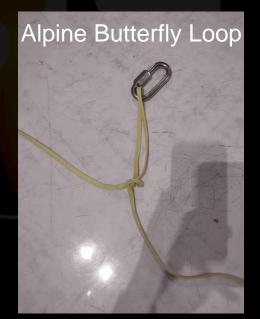
- 44 yd of ¼ " Kevlar shock cord
- 11 quick links
- 3 Alpine Butterfly Loops
- 4 Non-slip Mono Knots

Each knot will be epoxied for extra strength.

These components will provide the best chance of the system working as intended and not failing during execution.

Shock Cords

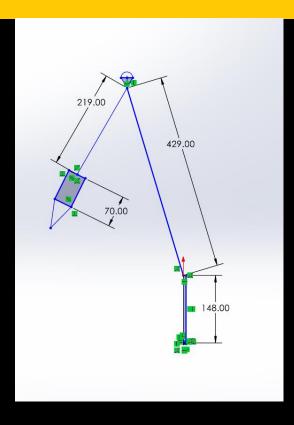
- ☐ We are using quick links and two types of fisherman knots to prevent tangling of the components.
- ☐ There will be rails developed by payloads inside to prevent tube knocking.
- ☐ We will have a beacon in the main compartment, but we are waiting on LTI for dimensions.


Material	Safety Factor
1/4" Kevlar shock cord	1.5
½" Quick link	1.69

1/2 in. Stainless Steel Quick link Max Load 3,900 lbs Price: \$24.84 (3)

KXR FAR10k Liquid 2024

Shock Cords


Drogue:

Total Shock cord length (3 x length of Rocket): 648"

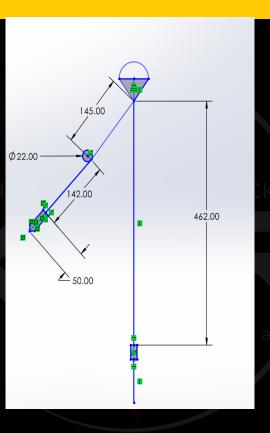
Drogue to upper body: 219"

Drogue to lower body: 429"

Clearance from upper body to lower body: ~140" (Safety Factor of 2)

Main:

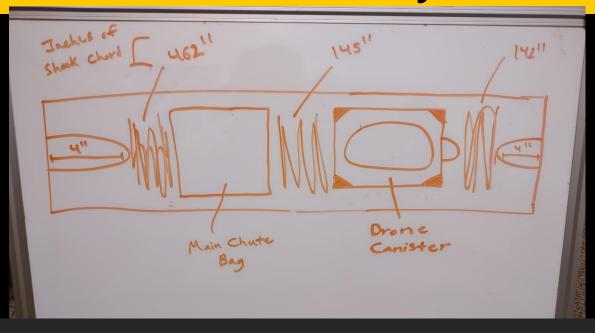
Total Shock cord length (3.5 x length of Rocket): 749"


Parachute to Payload 145"

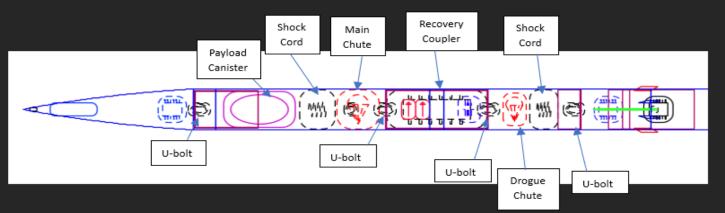
Payload to

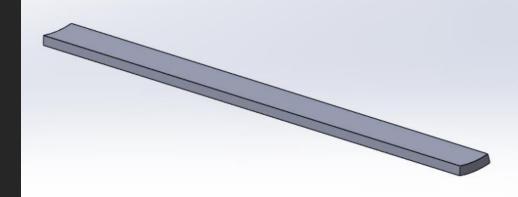
Nosecone: 142" Sf(1.5)

Nosecone to


Coupler: 176" Sf(1.7)

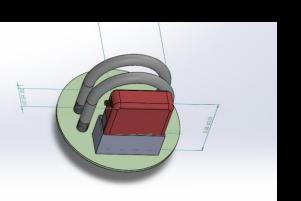
Rocket length: 216"

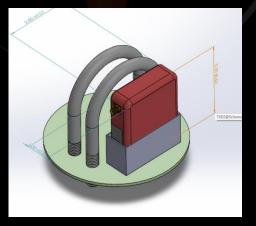



Recovery and Payloads Interface

Payload dimensions

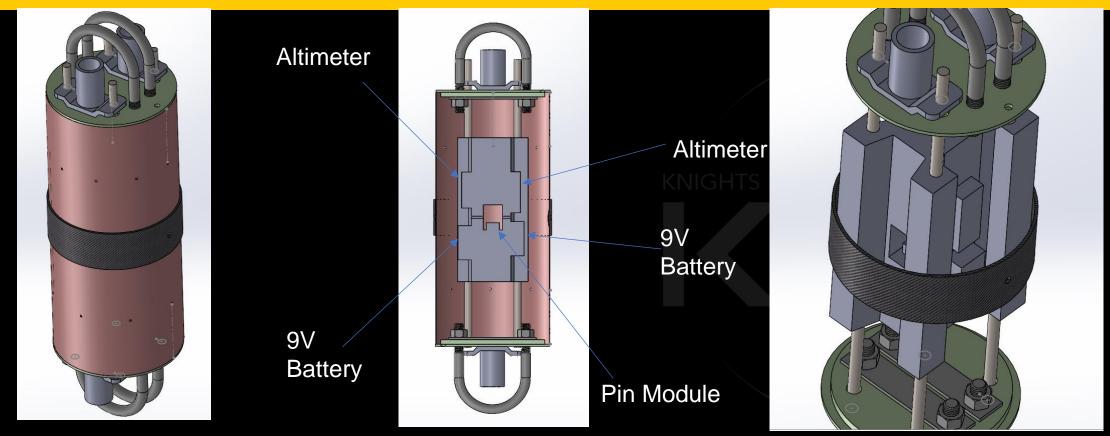
- 5.5" Diameter
- Drone Canister: 11"
 Recovery Dimensions
- 6" Diameter
- 36" Length
 Shock Cord Length
- 44 yd of ¼ " Kevlar shock cord
 Available space for Recovery after
 Payloads: 25" length





Recovery and LTI interface

- The Beacon will be located on the bulkhead near the drogue
- The Beacon will be attached to a pin on the bulkhead.
 The drogue will pull the Beacon off the pin turning it on.
- The beacon is a form of GPS that is battery powered.
- The Beacon is 3.35" by 1" by 2.8"

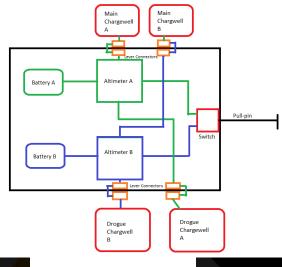


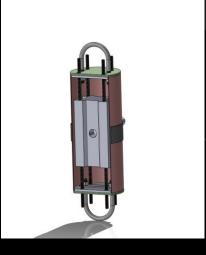
FMECA

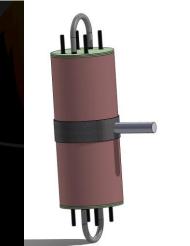
Part	Failure	Criticality	Effect	Mitigation
Shock Cords	Snap	High	No Controlled Descent	Apply Safety Factor
Quick Links	Snap	High	No Controlled Descent	Apply Safety Factor
Shock Cords	Snap due to stress caused by heat	High	No Controlled Descent	Kevlar Shock Cord (heat resistant)
Shock Cords	Tangling With Payloads	High	Damage to the Rocket	Rail System for Payload
Shock Cords	Tearing through Airframe	High	cord breaks or vehicle is no longer in recoverable condition	 place duct tape where the cord will "rub" up against the carbon tube
Shock Cords	Improper Shock Cord Lengths	Medium	Damage to the Rocket	Verify Lengths via Testing prototype

Recovery Coupler

Dimensions


- Outer Diameter 5.998"; Inner Diameter 5.820"
- 14 inch length




Recovery Avionics General Architecture

- □ Recovery system will use a fully dual redundant avionics system to deploy parachutes
- ☐ Both altimeters are fully able to deploy both parachutes
- ☐ Both powered by 9v batteries
- ☐ Nominal powered-on period of over 15 hours
- ☐ Avionics sit on a sled within the recovery coupler
- ☐ A pull-pin will activate the avionics system before flight, accessible from outside of the coupler; through vent hole

FAR10K
Recovery
Altimeter
Wiring
Diagram
*Does not represent scale or internal orientation of components

Recovery Avionics - Altimeters

- □ Stratologger CF Already owned by KXR
 - 1.5mah consumption, over 100 hours of nominal life
 - Samples atmosphere 20 times per second
 - □ Dual-Deploy computer
- ☐ Missileworks RRC2+ Already owned by KXR
 - □ 35mah consumption, 15 hours of nominal life
 - Dual-Deploy computer
- Both altimeters will not conflict with other projects, and in the case of one being destroyed in flight by another project, at least one backup of each is available

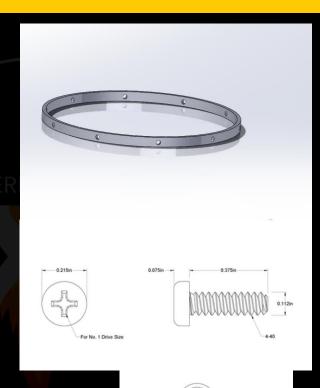
Altimeter history

Stratologger CF	Missileworks RRC2+
NSL (April 10th-24th)	FAR(June 2nd)
FAR (June 2nd)	IREC(June 17th)

Both altimeters will undergo testing to ensure they deploy charges at altitude differential

A choice will be made on which altimeter is the "prime" altimeter. The backup will deploy charges on a 1 second delay to ensure there is not an overpressure event

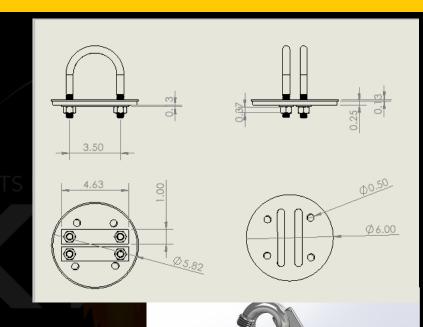
FMECA


Part	Failure	Criticality	cality	
Threaded Rods	Shearing	High	Coupler Failure	PVC Piping to cover the rods, stronger nuts to withstand snatch force.
Altimeters	Detonating charges late	High	Parachute(s) deploy at high velocity or too late	Ground testing of altimeters
Altimeters	Does not detonate charges	High	Parachute(s) do not deploy	Ground testing of altimeters
Parachute	Parachute failure (rip, does not unfold)	High	Unsafe descent	Proper packing procedure, analysis of velocity at deployment

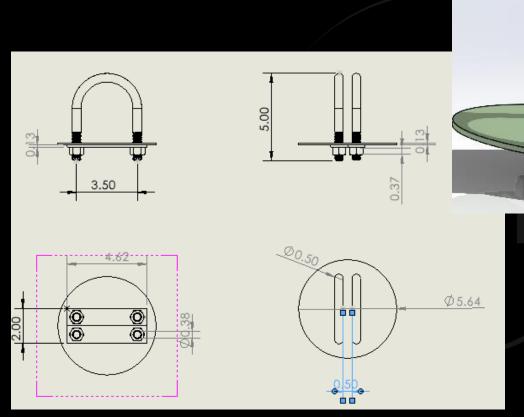


Recovery Coupler

- Shear pins
- 10 Nylon Pan Head Screws Phillips for Main parachute deployment
- 8 Nylon Pan Head Screws Phillips for Drogue parachute deployment
- Threaded 4-40 holes will be placed along an aluminum ring (located inside the coupler) to prevent thread failure for the shear pins



Recovery Bulkheads


- ☐ Materials: G10 (FR4) Fiber glass plate, Black Oxidized Steel U-bolts, ½ " nuts and washers, wire
 - quick connect, and The lip has been changed to G10 bulkhead lip
- ☐ The bulkhead will be tested in the recovery test as part of the coupler
- ☐ The bulkhead will have two charge wells attached, an extra as a redundant one
- ☐ Snatch Force: 1953 lbf -> 1701 lbf as such SF are up

Recovery Bulkheads

- → Attachments:
 - □ Recovery Coupler 3/8" rods with lock nuts to secure
 - Body Bulkheads secured in place by G12 couplers in body sections
- ☐ Verifications Excell calculators and physical tests
 - Using values from open rocket, other calculators, and manufacturers
 - Physical Test
- ☐ Forces applied:
 - ☐ Main areas: U-bolt, threads, and bulkhead plate
 - ☐ Transfer of Forces: Quick link > U-Bolt > back plate > Lip > BH Plate

FMECA

Part	Failure	Criticality	Effect	Mitigation
U-bolt	Snaps	High	Vehicle Disassembly	The U-bolt has a Safety factor 1.02 thus 2 U-bolts are being used
Bulkhead Plate	Bolt Tear	High	Vehicle Disassembly	13.7 Safety Factor on the Bulkhead

Bulkhead Cost

Part	Quantity	Cost
U-bolt/nuts(2)/back plate	8	\$46.53
G10(FR4)	1x0.125" x 12" x 24" sheet	\$42.11
Nuts ½ in	16	\$11.04
Washers ½ in	16	\$11.04
Hardpoint wood	1 2ft x 4ft plank	\$5.15

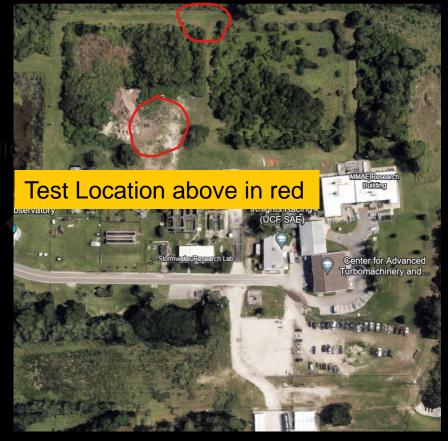
Chargewell cost

Part	Quantity	Cost
PETG FILAMENT - 1.75MM, 1KG SPOOL	1	24.99
E Matches	60	FAR PROP
Finger glove	16	\$11.04
Wire quick connect	20	\$13.99
20 ft wire	1	tbd
Concrete tiles	2	At home
Protective barrier		tbd

Black Powder

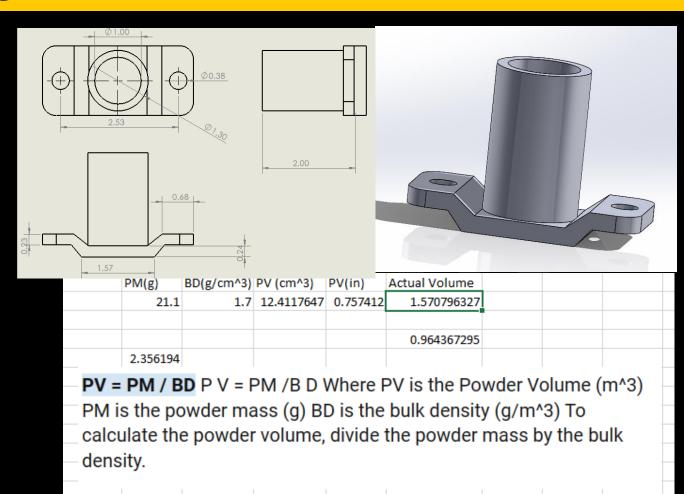
- □ Calculated Black powder by using values from open rocket (Fin height root chord Tip Chord & Pressure Base and Friction Coefficient) plugging into the aerodynamics forces we get drag top and bottom for drogue and main.
- ☐ Then we use drag top and bottom and use the black powder calculator
 - ☐ We used black powder safety values of 2 for drogue and 1.8 for main
 - ☐ Bolt safety of 1.5 for drogue and 2 for main.
 - ☐ We also got Rocket ID, length and hanging sections weight from Open rocket
- ☐ We will be using 6.9 Grams of black powder for the drogue and 19.1 grams of black powder for the Main

		Bolt Selec	ctor (select yellow box for drop	down)				
	Bolt Type			MinorA (in^2)	Max Stress (psl)	Min Stress (psl)		
Drogue	#4 40	76	50	0.005191238	14640.05201	9631.613167		
Main	#4-40	76	50	0.005191238	14640.05201	9631.613167		
_	_	Inp	nuts	_	_			
Rocket ID (drogue) (in)	Rocket ID (main) (in)	Empty Length (drogue) (in)	Empty Length (main) (in)	Launchpad Height (ft)	Rocket Apogee (ft)			
6	6	11	30	2762	16000			
_	_		d Outputs	_	_			
Temperature1 (F)	Temperature2 (F)	Atm. Pressure1 (psl)	Atm. Pressure2 (psl)	Ref Area Drogue (in^2)	Ref. Area Main (in^2) 💌			
49.16728	7.79272	13.30169173	7.127427439	28.27433388	28.27433388	< Temp/Pressure equation	s work up to 36152ft abo	ove sea lvl
Dro			Ma					
Drag Top (lbs)	66.49		Drag Top (lbs)	49.67	< Add up drag below and	above separation point (w	here it shears) to find yo	ur drag diff.
Drag Bottom (lbs)	105.81		Drag Bottom (lbs)	105.81				
Delta Drag (lbs)	39.31984546		Delta Drag (lbs)	56.13761346				
Sep. Force (lbs)	174.57321		Sep. Force (lbs)	174.57321				
Bolt Safety Factor	1.5		Hanging Section Weight (lbs)	20	< Weight of section being	g held by main shear bolts a	fter drogue deployment	
Bolts	4.277861109		Bolt Safety Factor	2				
Bolts (rounded w/ SF)	8		Bolts	4.614216469				
Black Powder Safety Factor	2		Bolts (rounded w/ SF)	10				
Black Powder (grams)	3.448608579		Black Powder Safety Factor	1.8				
Black Powder (SF) (grams)	6.9		Black Powder (grams)	11.75662016				
			Black Powder (SF) (grams)	21.2				


				cient Inputs					
Componen ~	Pressure C _c ~	Base C _t v	Friction C _c ~	Total C _c ∨	Drag (lbf) 🕶	Cn a ~	Cn ~	Lift (lbf) ~	
Nose Cone	0.04	0.00	0.03	0.07	26.20	0.00	0.00	0.00	
ose cone shoulde	0.00	0.00	0.01	0.01	1.96	0.00	0.00	0.00	
payload body tube	0.00	0.00	0.06	0.06	21.51	0.00	0.00	0.00	
ecovery switch rin	0.00	0.00	0.01	0.01	1.96	0.00	0.00	0.00	
ower recovery tub	0.00	0.00	0.04	0.04	14.86	0.00	0.00	0.00	
n mount	0.00	0.00	0.03	0.03	13.30	0.00	0.00	0.00	
trogen valves mou	0.00	0.00	0.02	0.02	6.26	0.00	0.00	0.00	
fuel tube	0.00	0.00	0.02	0.02	7.04	0.00	0.00	0.00	
fuel valves mount	0.00	0.00	0.02	0.02	6.26	0.00	0.00	0.00	
ox tube	0.00	0.00	0.06	0.06	21.51	0.00	0.00	0.00	
cc mount	0.00	0.00	0.02	0.02	6.26	0.00	0.00	0.00	
trapezodial fin set	0.02	0.00	0.01	0.03	9.78	0.00	0.00	0.00	
boat tail	0.00	0.07	0.02	0.09	20.55	0.00	0.00	0.00	
Total	0.05	0.07	0.31	0.44	157.44	0.00	0.00	0.00	
				Constant Inpu	ıts				
Density of air at	Management	outer	Cross-sectional	α (angle of	Ele Asses		El- Book Chood	Ele Tie Chee	Fin
sea level	Max velocity	diameter	Area	attack)	Fin Area	g	Fin Root Chord	Fin Tip Chord	Height
slugs/ft^3	ft/s	ft	ft^2	degrees	ft^2	ft/s^2	ft	ft	ft
0.00238	1001.00000	0.51667	0.32844	0.00000	0.18960	32.17405	0.58	0.38	0.40

Black Powder Testing

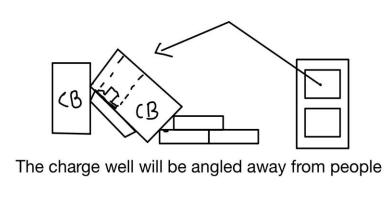
- Before Ground tests-
 - Igniter tests and Charge well verification tests
 - Payload and Beacons made
 - Propulsion systems made
- Location: Water treatment plant not official)
- Weight: TBD (143 LB)
- Safe distance: 30-50 feet
- Test stand : TBD (Under Design)
- Estes Launch will be used to ignite the E-matches.
- Procedure to create Free BP charge
 - Measure BP, Fill into Glove,
 - Stick E-Matches in, Tape ends shut.


BP Protection Measures

Failure	Mitigation
Unsafe Early Charge Detonation	Before connection to power make sure to stay far away
Other Charge detonation – static charges, etc	Rubber Gloves KNIGHTS EXPERIMENTAL F
Black Powder contamination	Keep BP in ammo box
Modules hitting KXR staff on detonation	Safe distance + Safety Mound
Rapid Unscheduled Disassembly	Safe distance + Safety Mound
Flammability	Safe distance + Safety Mound
Explosion hazards	Safe distance + Safety Mound

Charge Wells

- ☐ 3D printed charge wells (PETG), Wing nuts 3/8", electrical tape, E-match, quick connect, and Wiring
- ☐ E-match will be placed in the barrel and connected via wire
- Will use a premade free-floating (wrapped in the finger of a glove with tape) charge to be placed in the barrel
- ☐ Charge well will be secured on a solid base with two pavers on the sides to hold it in place
- ☐ A protective barrier will be 20 ft away with a wire connected to detonate the charge



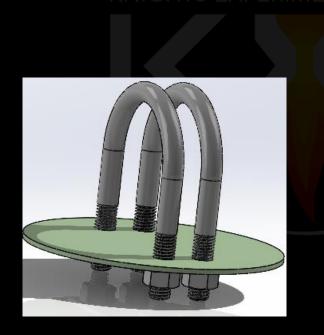
Charge Well Testing

- Pre req: Ignitor verification test must be done beforehand
- The Charge Well test location: Water Treatment plant (red circle)
- During the test participants will hide behind the mounds
- Safety Distance: 30 ft
 - Based on the national Association of Rocketry for rockets with D motors
- Safety Gear: Gloves, Goggles, and Hats
- The "Wall" is the mound
- Testing setup:
- Projected Test Date: 3/9/24
- Attatch the wires to a 9v battery and a switch

FMECA

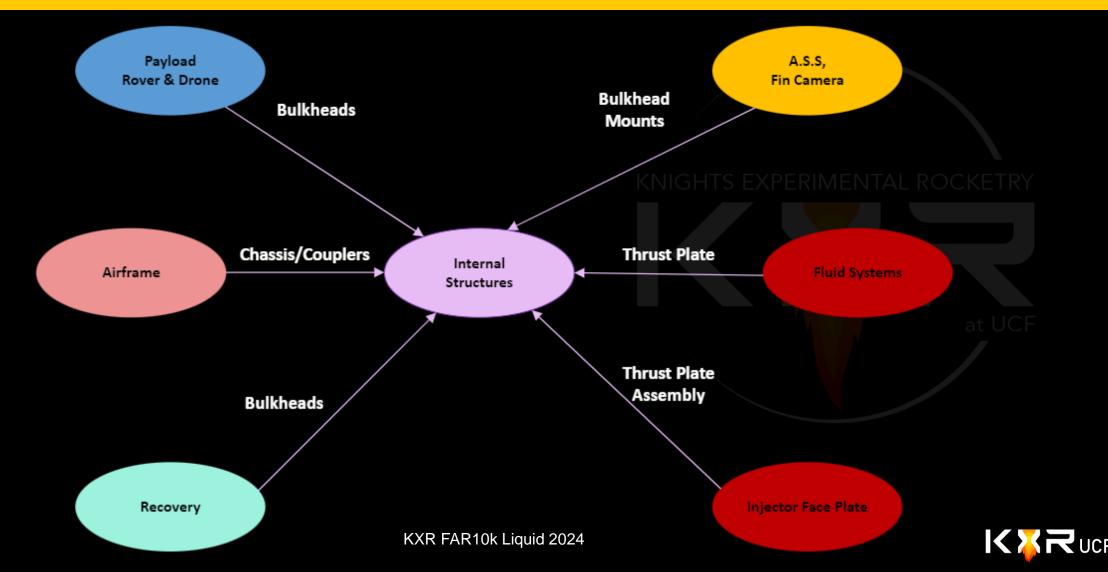
Part	Failure	Criticality	Effect	Mitigation
BP Fuse	Fails to ignite	High	Separation fails	Proper wiring
BP Amount	Too much BP	High	Separation fails	BP testing
BP Amount	Too little BP	High	Separation fails	BP testing

Recovery System Manufacturing


Bulkheads

- Made from G10 fiberglass
- Bulkheads will be designed through CAD
 - The drawing file will be sent to a fabrication center to be laser cut
- U-bolts will be bought from McMaster

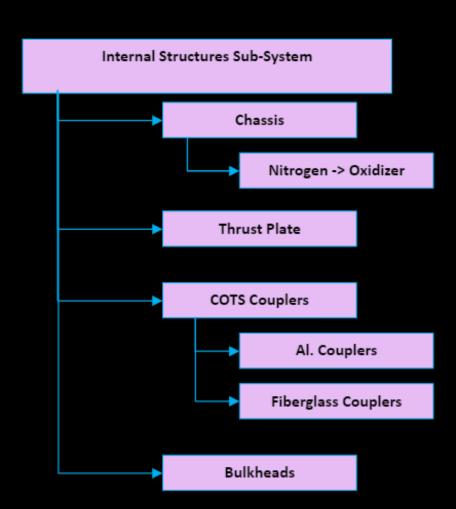
Switchbands


- Made from carbon fiber pre-preg
- The 2" band will be cut from the lower recovery tube and the nitrogen tank tube
 - These tubes can be manufactured longer than needed to allow the switchbands to be cut from them

Coupler will be made out of carbon fiber instead of Fiberglass

Internal Structures Interface Diagram

Internal Structures Functional Requirements


Requirement	Requirement Type	Verification Method
The Internal Structures sub-system shall support and protect the Propulsion and Payload systems	Functional	Analysis
The internal Structures sub-system shall withstand the loads and vibrations acting on the rocket	Functional	Analysis
The Internal Structures sub-system shall house and provide access to the internal components of the vehicle	Functional	Inspection
The Internal Structures sub-system shall allow separation between motor, payload and recovery section of the vehicle.	Functional	Inspection
The Internal Structures sub-system shall withstand the weight of the propulsion system [64 lbs] and the payloads [10 lbs]	Functional	Analysis

Internal Structures Technical Performance Measures

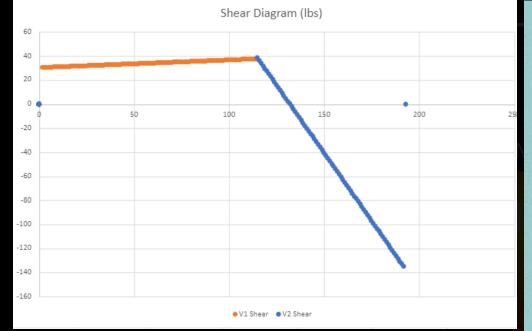
Measure	TPM Value	Units	Verification Methods
Total Compression Loads	16,941.311	psi	Force Calculator (Aero Loads)
Snatch Force	1,260.283 (No S.F) 1,953.439 (S.F 1.55)	lbf	Force Calculator (Snatch Force)
M1 Bending Max M2 Bending Max	-3,726.961 5,742.241	psi	Far Force Calculator (Aero Forces)
G Force	2.84	G's	Open Rocket
Shear Force (V1) Shear Force (V2)	67.690 221.527	lbf	Force Calculator (Aero Force Loads)
Bearing Stress (Tensile) Bearing Stress (Compression)	2,367.805 68,105.684	psi	Force Calculator (bolt sizing)

Internal Structures Component Breakdown

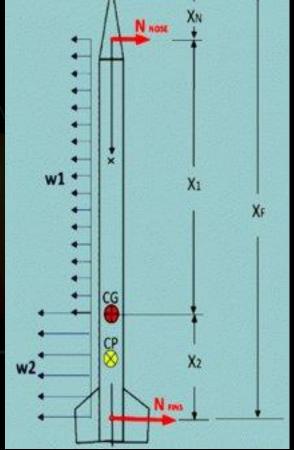
Chassis Technical Performance Measures

Measure	TPM Value	Units	Verification Methods
Total Compression Loads	16,941.311	psi	Force Calculator (Aero Loads)
Snatch Force	1,260.283 (No S.F) 1,953.439 (S.F 1.55)	lbf	Force Calculator (Snatch Force)
M1 Bending Max M2 Bending Max	-3,726.961 5,742.241	psi	Far Force Calculator (Aero Forces)
G Force	4.24	G's	Open Rocket
Shear Force (V1) Shear Force (V2)	67.690 221.527	lbf	Force Calculator (Aero Force Loads)
Bearing Stress (Tensile) Bearing Stress (Compression)	2,367.805 68,105.684	psi	Force Calculator (bolt sizing)

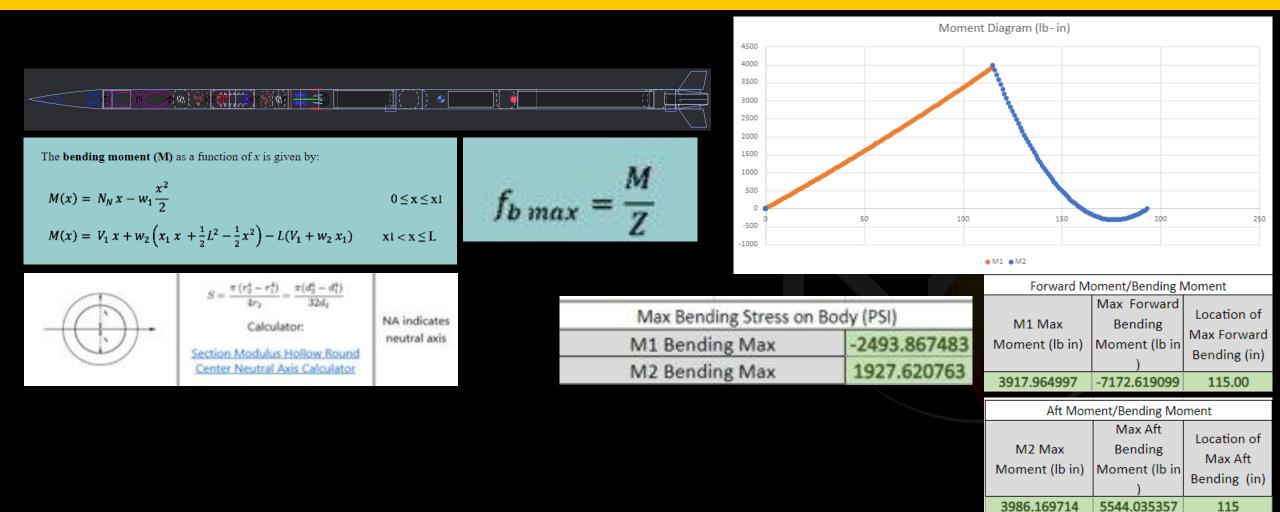
Airframe Shear Stress


Equations from Nakka rocketry assume a distributed load acting on the body during flight.

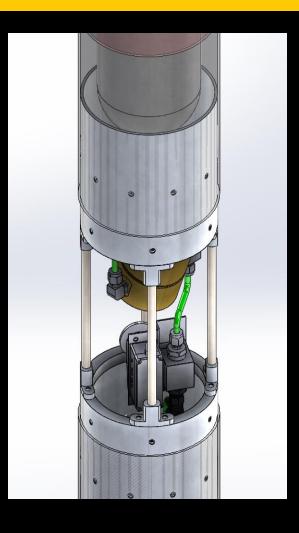
$$w_2 = \frac{N_F(2x_2 + x_1) - N_N x_1}{x_2^2 + x_1 x_2}$$


$$w_1 = \frac{N_N + N_F - w_2 \, x_2}{x_1}$$

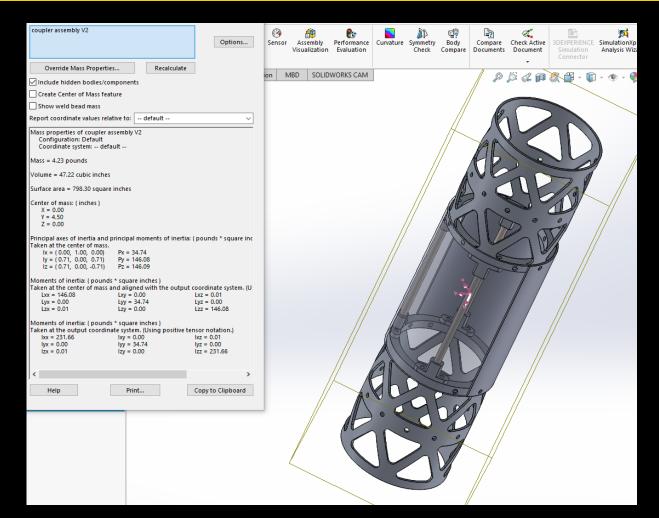
$$V(x) = V_1 - w_2(x - x_1)$$
 $x_1 < x \le L$

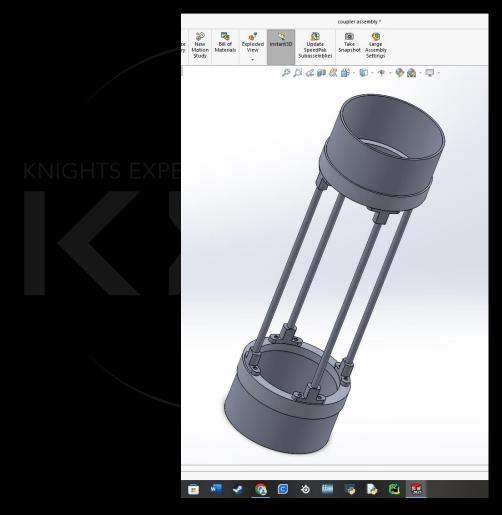


٠					
	Body Tube	Loads			
	Distributed load W1 (lb/in)	Distributed load W2 (lb/in)	Lateral Shear V1 (lbf)	Lateral Shear V2 (lbf)	
	-0.064303376	2.256670282	37.79152609	121.91	



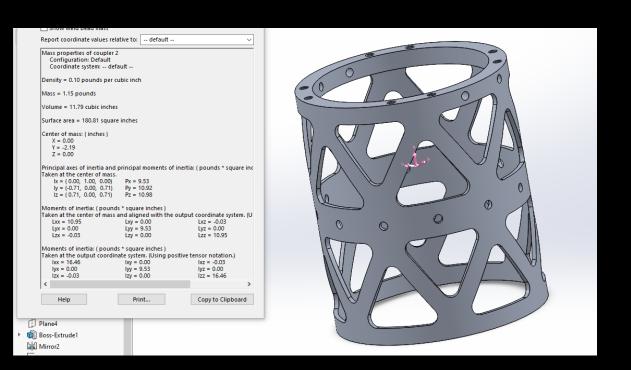
Airframe Bending Stress

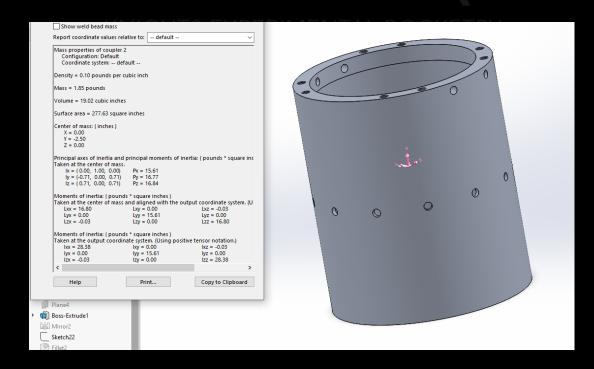

Chassis



- Aluminum Coupling Section goes between the nitrogen tank and the fuel tank
- 8" long steel threaded rods provide an opening for access to regulator to avoid moving the entire tube and wearing out threads
- Aero panels can cover up the exposed plumbing and take little load during flight
- The panels will be made out of 3D printed polycarbonate

Design Evolution

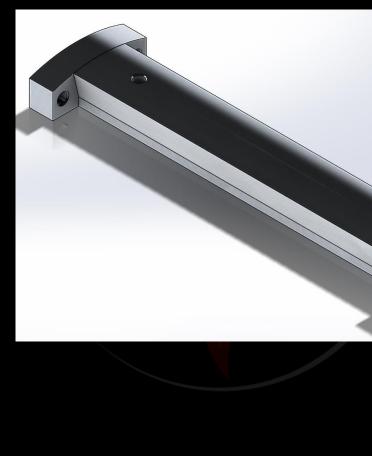




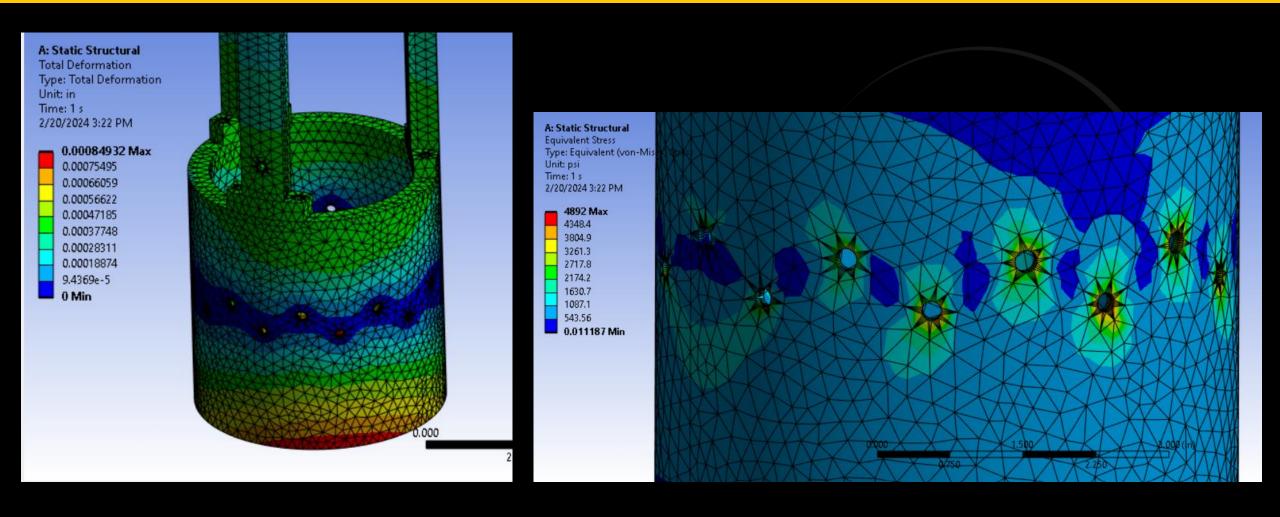
Weight Loss

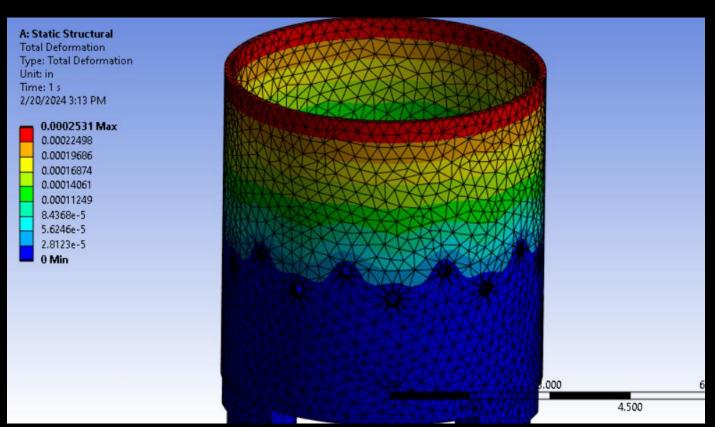
- Original: 1.85 lbs
- Lightened: 1.15 lbs

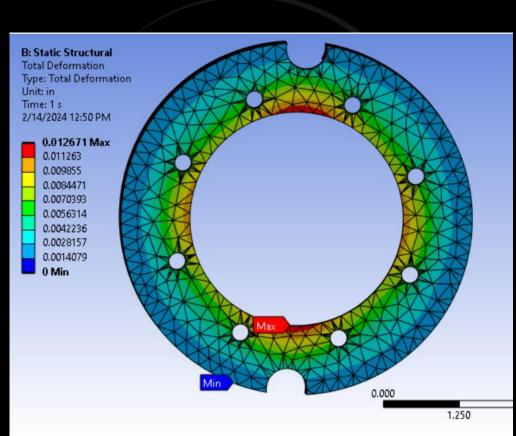
- Weight loss of 0.7 lbs per coupler, or 40%
- Adds up to almost 3 lbs across all couplers

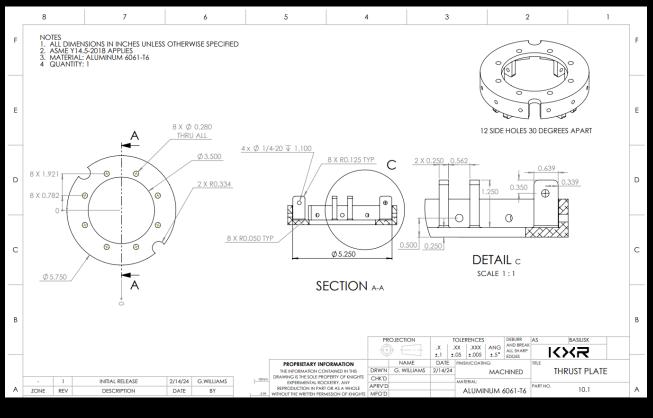


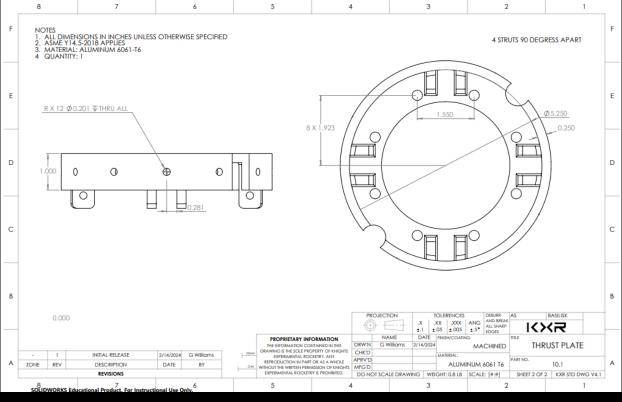
Design Updates

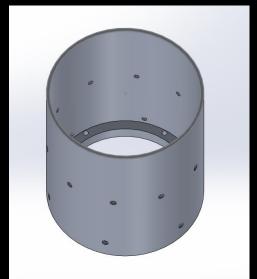



KXR FAR10k Liquid 2024


Bending Sims


Compression Sims




Thrust Plate Drawings

Chassis

Item	Material	Stock and Machining Costs	Quantity	Total	Resource
Chassis	6061 T6 Aluminum	\$75 for stock 3 hours per coupler \$35 hourly	1	Estimated \$360	Quotes provided by UCF Machine Shop
3/8" threaded rods	Steel	\$4.24	4	Estimated \$18	https://www.homede pot.com/p/5-8-in-11- tpi-x-12-in-Zinc- Plated-Threaded- Rod- 802017/204274006

FMECA

Part	Failure	Criticality	Effect	Mitigation
Coupler Tube	Bolt tear out	High	Joined sections of the airframe come apart during flight	6" shoulder length on carbon tubes
Coupler Tube	Bearing Stress	High	Bolt connections become loose during flight	Bigger bolts and better material for those bolts
Threaded Rods	Buckling	High	Component bends and fails during flight	Using different strut geometry, increasing the number of threaded rods or the diameter
All	Galvanic corrosion	High KXR FAR10k Liquid 2024	Oxidizes the Aluminum	We will apply a coat to the Aluminum to stop the corrosion

RUCF

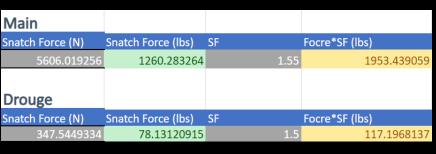
Thrust Plate TPMs

Measure	TPM Value	Units	Verification Methods
Total Compression Loads	16,941.311	psi	Force Calculator (Aero Loads)
Snatch Force	1,260.283 (No S.F) 1,953.439 (S.F 1.55)	lbf	Force Calculator (Snatch Force)
G Force	2.84	G's	Open Rocket
Thrust Force	539.991	lbf	Force Calculator (Aero Force Loads)
Bearing Stress (Tensile) Bearing Stress (Compression)	2,367.805 68.105.684	psi	Force Calculator (bolt sizing)
Shear Stress (Tensile) Shear Stress (Compression)	1,396.641 15,234.508	psi	Force Calculator (bolt sizing)

Thrust Plate

- Thrust Plate interfaces with aluminum struts coming from the injector
- Aluminum coupler tube attaches to the thrust plate in the middle to allow for attachment of the boat tail and one of the main body tubes
- The oxidizer bulkhead is attached, flushed with the thrust plate
- An indent of 3/8" is made to allow the fuel line to pass through

Thrust Plate Cost Breakdown


Part	Material	Stock and/or Machining Costs or	Quantity	Total	Link (not hyperlink)
Thrust Plate	6061 T6 Aluminum	Estimation of 20- 35 dollars for stock 3.5 to 4 hours of machining time Hourly Machine Charges of 35 dollars	1	Estimated \$170 dollars	Quotes from UCF machine shop
Aluminum Tube (6x.125x5.75)	6061 T6 Aluminum	\$44.37	1	\$44.37	https://www.me talsdepot.com/ aluminum- products/alumi num-round- tube

Compression and Tensile Stresses

Thrust Force (lb)	Tube Cross-sectional Area (in^2)	Engine Thrust Compression (PSI)
539.9910813	1.257755468	429.3291462

		Force Drag (lb)	Tube Cross-sectional Area (in^2)	Compressive Drag (PSI)
		429.0488383	1.257755468	341.1226181
			Tube	Mass inertia
	Mass (lb)	Max Gs	Cross-sectional	compression
			Area (in^2)	(PSI)
	145	2.84	1.257755468	14243.23844
Engine Thrust	Max Bending	Compressive	Mass inertia	Total
Compression	Stress on Body	Compressive	compression	Compressive
(PSI)	(PSI)	Drag (PSI)	(PSI)	(PSI)
429.3291462	1927.620763	341.1226181	14243.23844	16941.31097

 Compression Loads are calculated using equations from Nakka Rocket

$$f_{cm} = \frac{m \ g \ (1 + G_{max})}{A_c}$$

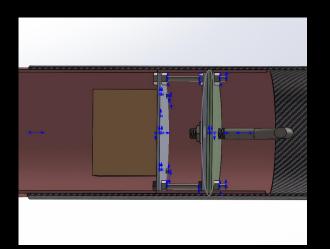
$$f_{ca} = \frac{F_D}{A_c}$$
 [Equation 11]

- Compressive stress due to mass inertia
- Compressive stress due to drag force

 Tensile stress from snatch force during recovery

FMECA

Part	Failure	Criticality	Effect	Mitigation
Coupler Tube	Bolt Shear	High	Thrust Plate and or joined sections of the airframe come apart	6" shoulder length on body tubes 3" of shoulder length into the boat tail
Coupler Tube	Bearing Stress	High	Bolt connections become loose	Bigger bolt diameter or stronger material
Thrust Plate	Bolt shear	High	Propulsion system connections become loose during flight	Using bigger bolt diameter and stronger material
Thrust Plate	Deformation	High	Propulsion system could collapse into the airframe	Adding thickness to the thrust plate or changing material


Centering Rings


- To prevent translation of the tanks and the combustion chamber centering rings will be placed around the propulsion system.
- Centering rings will be placed around the combustion chamber as well as the fuel and oxidizer tank.
- Will be cut out of plywood
- Cost: \$40 for a sheet of plywood

COTS Couplers/ Bulkheads

- Sections that won't require a chassis near the propulsion system will be joined together using fiberglass couplers
- Above the nitrogen tank, two bulkheads will secure the PCB and the ACB using fiberglass couplers and G10 plates
- These bulkheads will also be used to secure two cameras providing a horizon view during flight and a camera pointing down towards the fins

Item	Full Item Description	Cost	Quantity	Total	Link (not hyperlink)
G12 Fiberglass coupler tube	6" fiberglass tube	\$60.00 each	2	\$120.00	https://www.co mpositewareho use.com/index. php?route=pro duct/product&p roduct_id=125

FMECA

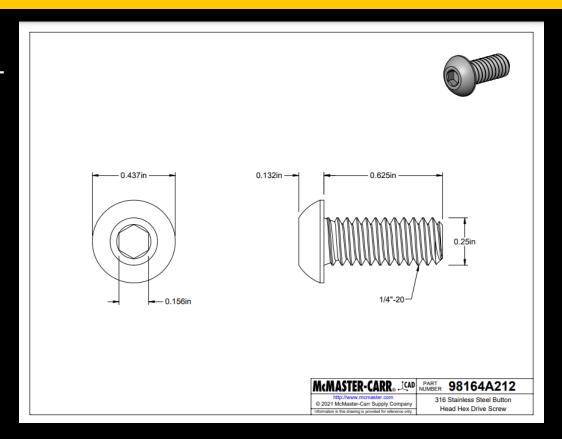
Part	Failure	Criticality	Effect	Mitigation
Centering Rings	Cracking or disassembly	Medium	Risks the propulsion system sloshing inside the airframe	Multiple centering rings and/or thicker wood
Bulkeads	Cracking or disassembly	Medium	PCB, ACB, and cameras could risk collapsing inside the airframe	Using larger bolts to support the bulkhead

Bolt Bearing Stress

Compressive Loads Aluminium

Bearing Stress (psi)	Saftey Factor	
68185.68485	0.527970058	

Tensile Loads Aluminium


Bearing Stress (psi)	Saftey Factor	
2367.80492	15.20395523	

Bolt		
Bolt Type	Bolt Type Wall thickness (in)	
1/4 - 20	0.2	1.75

Airframe will be secured using 10 ¼-20 steel bolts at all jointing sections.

$$f_{br} \leq \frac{S_{br}}{S.F.}$$

$$f_{br} = \frac{F_S}{D_m t}$$

Bolt Tear Out

Bolt Diameter (in)	Edge distance (in)	
0.25	0.5	
Bolt Diameter (in)	Minimum Edge distance (in)	
0.25	0.375	

•	Minimum Edge distance was
	calculated for aluminum couplers
	on the chassis and on the aft end
	on the chassis and on the aft of

|--|

Compressive Loads Doits					
Number of Bolts	Num Bolts With SF	Num of Bolts to even Number			
6.165516932	10.78965463	10			
Shear Stress Per Bolt (PSI)	Shear Force per Bolt (lb)	SF of Bolts			
15234.50842	2130.802652	1.62192402			

$$F_{max} = f \frac{M}{D}$$

f = 2/5 for ten fasteners

Shear Stress Average = Applied Force / Area or Shear Stress ave.= $F/(\pi r^2)$ or Shear Stress ave.= $4F/(\pi d^2)$ Where:

Num of Bolts Number of **Num Bolts** to even Bolts With SF Number 0.989154616 0.565231209 **Shear Stress** Shear Force SF of Bolts Per Bolt (PS) per Bolt (lb) 1396.641954 195.3439059 17.69187518

Tensile Loads Bolts

Max # of bolts:
$$n_{bolts} = \frac{F_{bulk}}{F_{bolt}^{max}} =$$

Max Force one bolt can take: $extit{ } F_{bolt}^{max} = extit{ } au_u \cdot A_{bolt}$

Edge Distance

 $E \geq 2 imes d_{bolt}^{major}$

$$E \geq 2 imes 0.25$$

$$E = 0.5$$

Minimum Distance from Edge

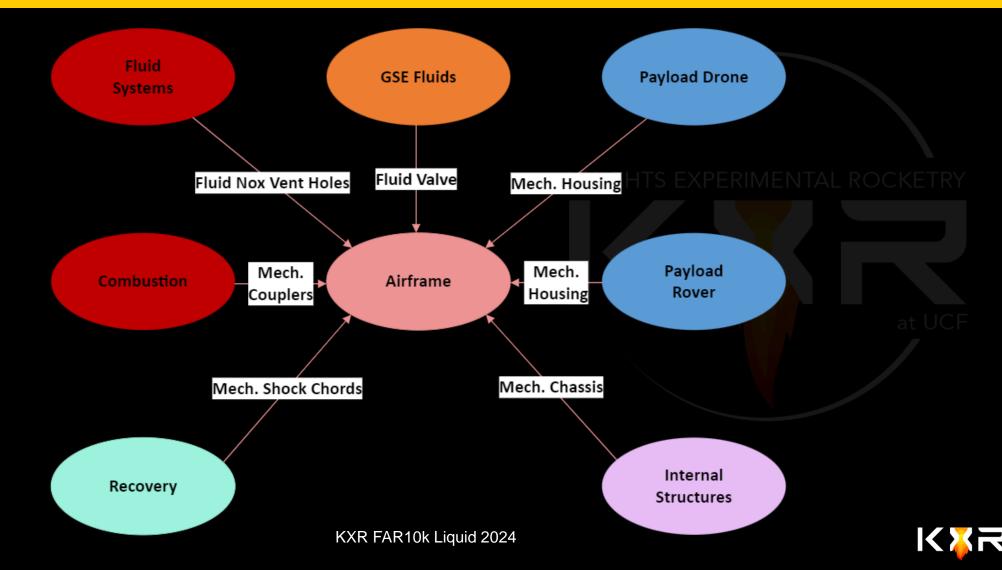
$$E_{min} = E - rac{d_{bolt}^{major}}{2}$$
 $E_{min} = 0.5 - rac{0.25}{2}$

$$E_{min} = 0.5 - 0.125$$

$$E_{min}=0.375in$$

Internal Manufacturing

Chassis


- Will purchase stainless steel threaded rods, which we will cut to specified lengths
- The coupler adapter ("feet") of the struts will be machined out of 6061 aluminum in the machine shop
- 6 hours to machine
- 8 pieces in total
- Thrust Plates
 - Will be machined out of 6061 aluminum in the machine shop
- Bulkhead Rings
 - Will be made from COTS G12 couplers
 - We will cut the rings from the coupler and post-process as necessary

Airframe Component Breakdown

Airframe Interface Diagram

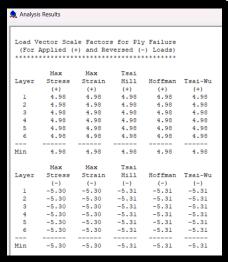
Airframe Functional Requirements

Requirement	Requirement Type	Verification Method
The Airframe Sub-system will be optimized for transonic speeds	Functional	Analysis
The Airframe Sub-system will provide stability in flight	Functional	Analysis
The Airframe Sub-system will withstand flight loads	Functional	Analysis

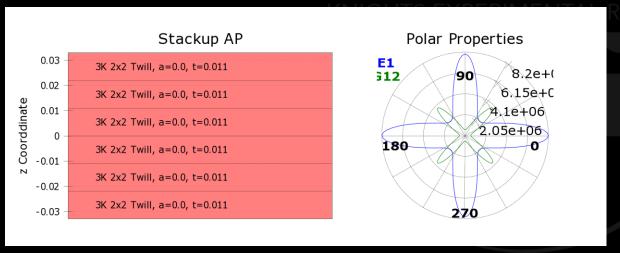
Airframe TPMS

Measure	TPM Value	Units	Verification Method
Snatch Force	1954	lbf	Demonstration
Max Bending Moment	7173	lb-in	Analysis
Max Compressive Load	21309	lbf	Analysis
Lateral Shear	122	lbf	Analysis
Drag Coefficient	0.75	n/a	Analysis
Vibrations (Flutter)	3120	ft/s	Test/Analysis

External Structure – Composite Testing

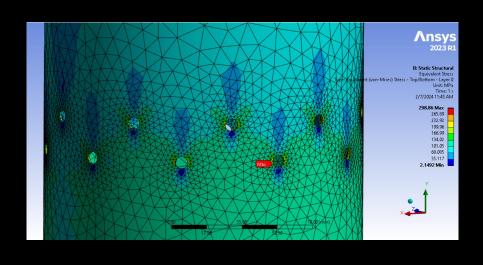


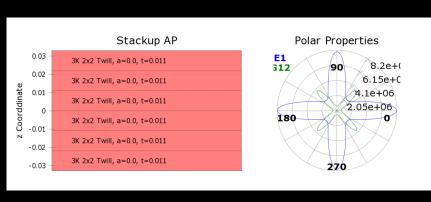
Coupon testing did not go well, but the results from XMat are encouraging

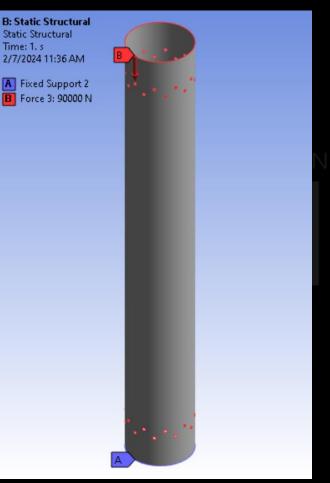


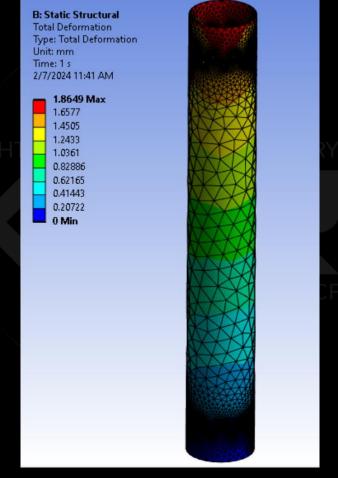
External Structures Lay-Up

- Body Tubes, Boat Tail & Fins: 3K 2x2 twill weave prepreg carbon fiber
- Nose Cone: Wet-Lay Fiberglass Sleeves
- Methods of calculations: The Laminator, Classical lamination theory, Force Calculator
- Simulation: Ansys ACP

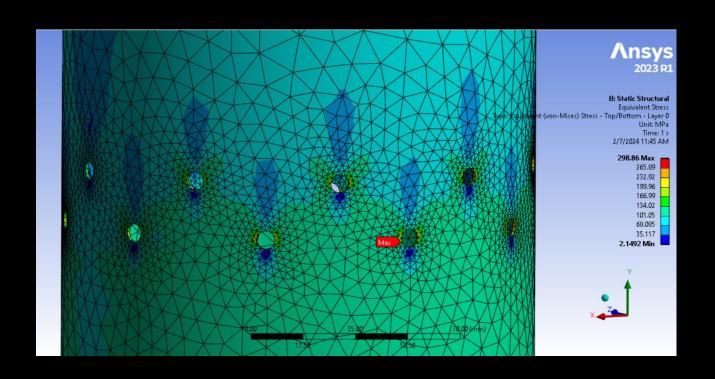





Ply design and Polar properties for body tubes

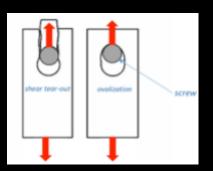


Ansys ACP Body Tube Simulation



At maximum compressive loads

Ansys - Max stress location

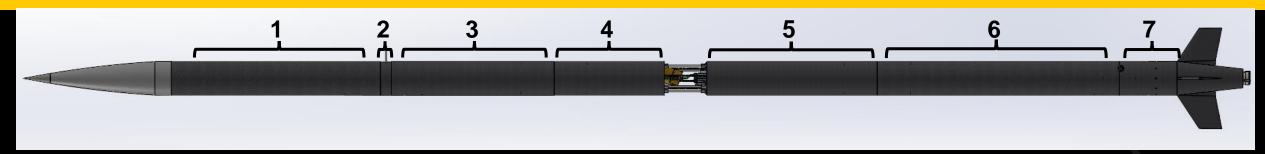


Maximum stress location at bolt holes – increased bolt number per tube ends & added an offset to mitigate bending moment

External Structures Lay-Up

Item	Number of Plies	Ply Orientation	Method	Raw Composites Cost
Body Tubes	6	0	Rolling	\$1277
Coupler Aero covers "skins"	2	0	Rolling	(integrated in Body tubes)
Nose Cone	6	45/45	Sleeves	\$74.9
Boat Tail	8	0	Rolling	\$234
Fins	24	0	Hand Laying	\$399
Total (+ Tax & Handling)	-	-	-	\$2310

Edge Distance S.F:


- = Distance / Minimum Safe distance
- = 3in / 0.375in = 8

Bi-Axial FG Sleeve

Body Tubes / Design

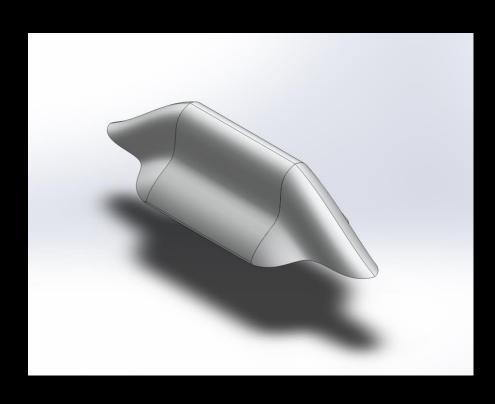
KNIGHTS EXPERIMENTAL ROCKETRY

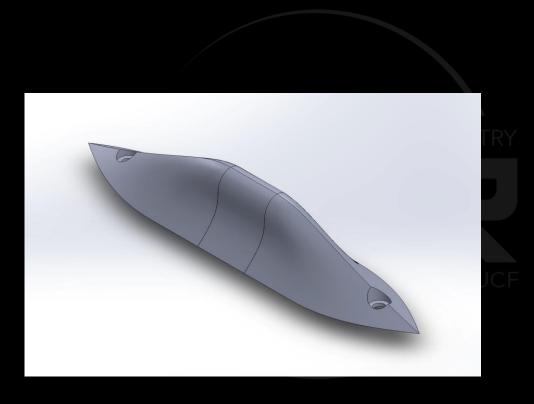
1 Payload Body Tube 2 Recovery Switch Ring

3 Drogue Body Tube 4 Nitrogen Tank Tube 5 Fuel Tank Tube 6 Oxidizer Tank

7 Boat Tail

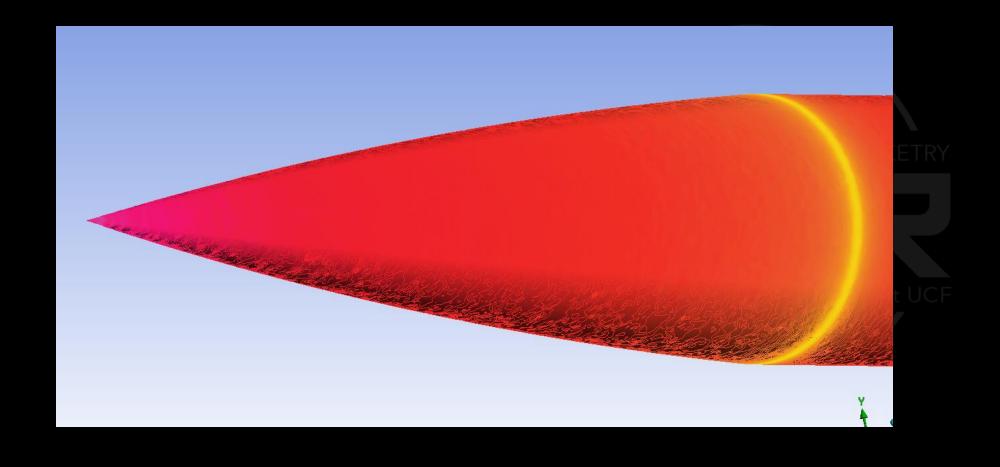
Body Tube FMECA


Part	Failure	Criticality	Effect	Mitigation
Body Tubes/Nose Cone/ Boat tail/ fins	Structural Failure	High	Complete Mission Failure	Verify Layup and add SF as well as coupon testing
Body Tubes / Nose Cone / Boat Tail	Bolt Shear/ Tear out	High	Complete Mission Failure	Optimize the bolt locations

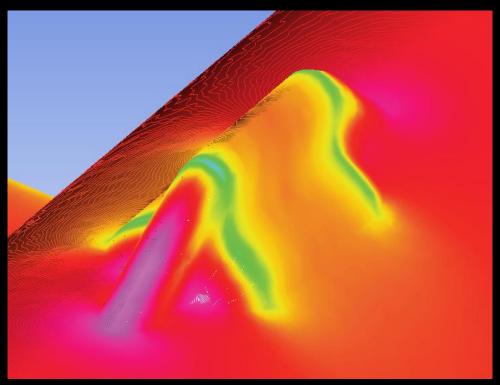


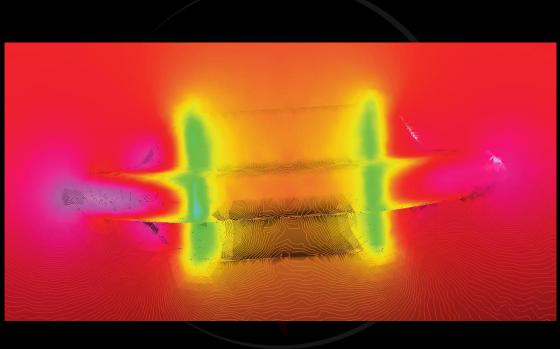
- Got sims to workSometimes
- Calculated Drag in FLUENT was about 360 N ~ 81 lbf
 Close to force calculator of 90 lbf
- Old aerocovers and no camera cover
 Would not mesh nicely

Antenna Aerocovers

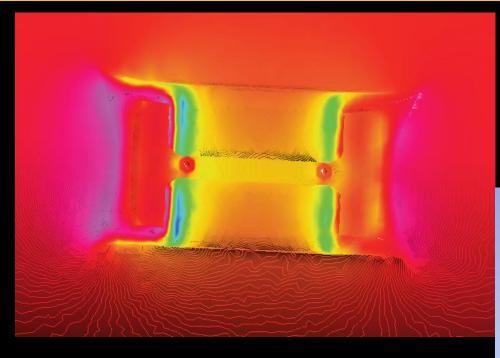


Old

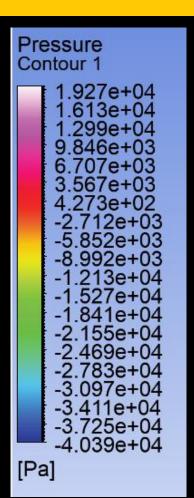


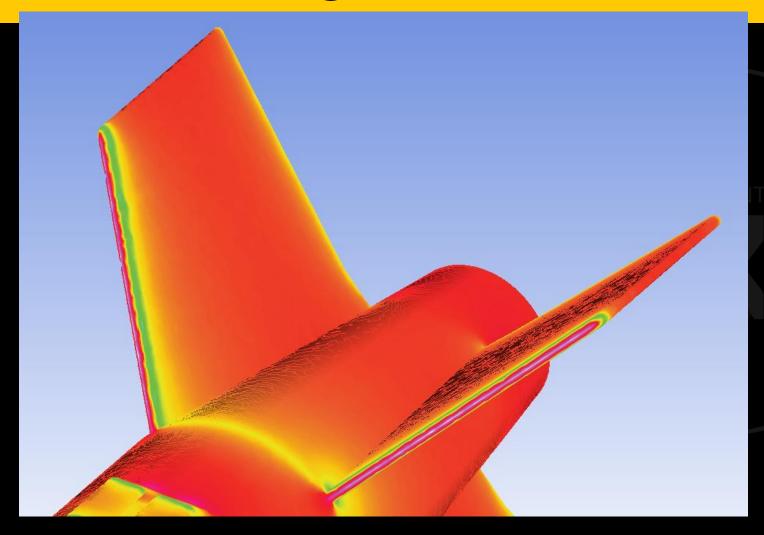

Pressure Contour 1 1.927e+04 1.613e+04 1.299e+04 9.846e+03 6.707e+03 3.567e+03 4.273e+02 -2.712e+03 -5.852e+03 -8.992e+03 -1.213e+04 -1.527e+04 -1.841e+04 -2.155e+04 -2.469e+04 -2.783e+04 -3.097e+04 -3.411e+04 -3.725e+04 -3.725e+04 -4.039e+04 [Pa]

Pressure Contour 1 1.927e+04 1.613e+04 1.299e+04 9.846e+03 6.707e+03 3.567e+03 4.273e+02 -2.712e+03 -5.852e+03 -8.992e+03 -1.213e+04 -1.527e+04 -1.841e+04 -2.155e+04 -2.469e+04 -2.783e+04 -3.097e+04 -3.411e+04 -3.725e+04 -3.725e+04 -4.039e+04

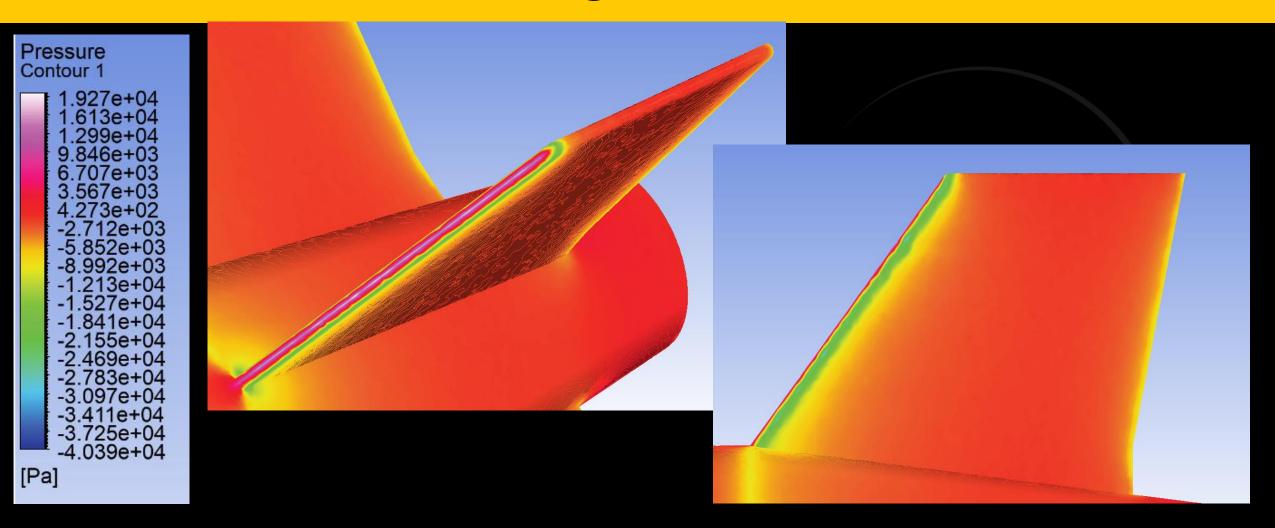


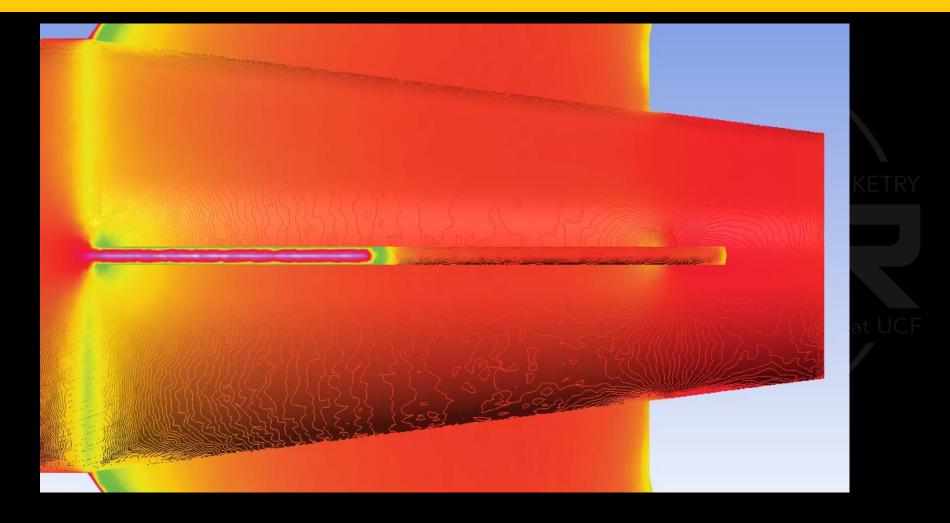

[Pa]

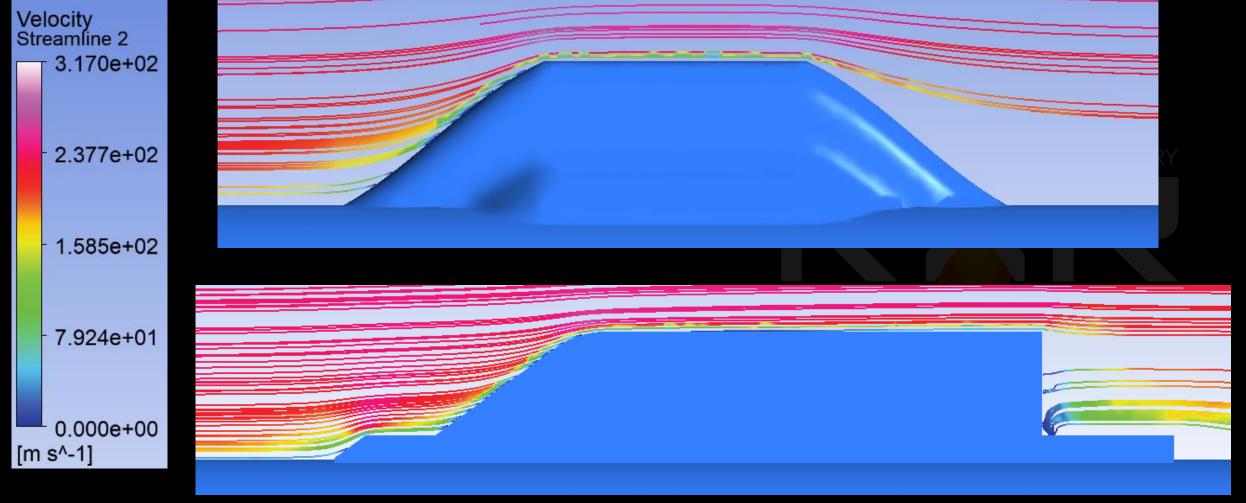

Pressure Contour 1 1.927e+04 1.613e+04 1.299e+04 9.846e+03 6.707e+03 3.567e+03 4.273e+02 -2.712e+03 -5.852e+03 -8.992e+03 -1.213e+04 -1.527e+04 -1.841e+04 -2.155e+04 -2.469e+04 -2.783e+04 -3.097e+04 -3.725e+04 -4.039e+04 [Pa]

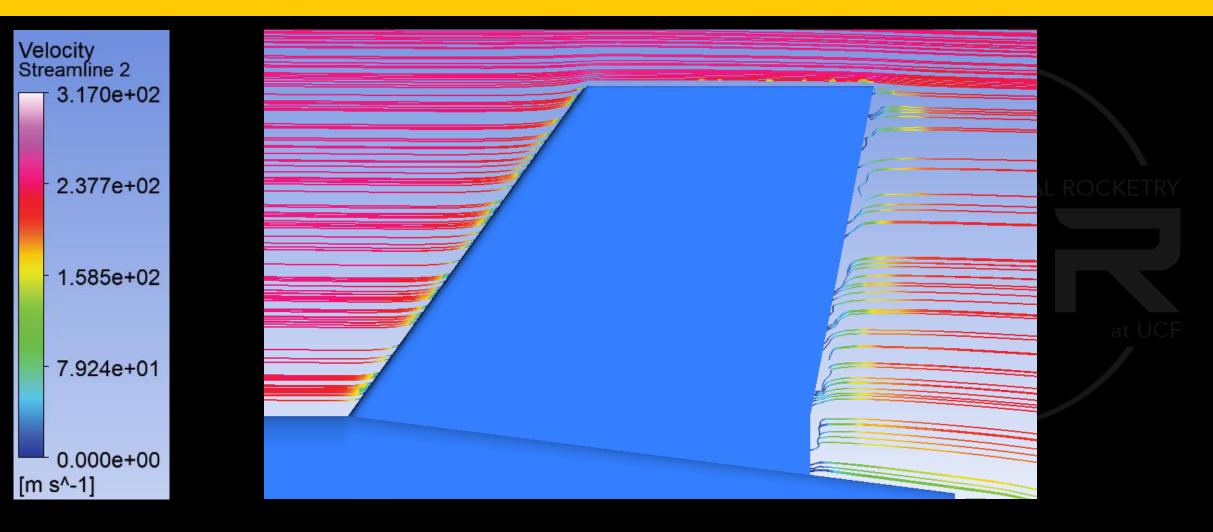


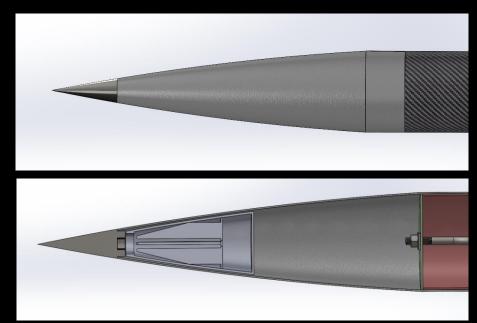
Pressure Contour 1 1.927e+04 1.613e+04 1.299e+04 9.846e+03 6.707e+03 3.567e+03 4.273e+02 -2.712e+03 -5.852e+03 -8.992e+03 -1.213e+04 -1.527e+04 -1.841e+04 -2.155e+04 -2.469e+04 -2.783e+04 -3.097e+04 -3.411e+04 -3.725e+04 -3.725e+04 -4.039e+04 [Pa]

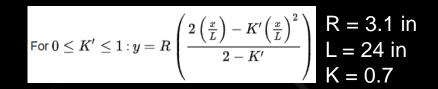


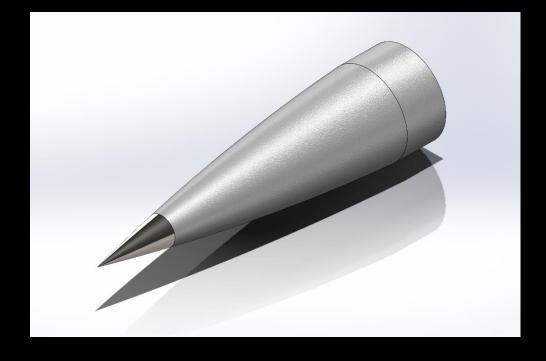





Pressure Contour 1 1.927e+04 1.613e+04 1.299e+04 9.846e+03 6.707e+03 3.567e+03 4.273e+02 -2.712e+03 -5.852e+03 -8.992e+03 -1.213e+04 -1.527e+04 -1.841e+04 -2.155e+04 -2.469e+04 -2.783e+04 -3.097e+04 -3.411e+04 -3.725e+04 -3.725e+04 -4.039e+04 [Pa]







Nose Cone

- Parabolic Nose Cone
 - Achieved lowest coefficient of drag between Fluent & OpenRocket with K = 0.7
- Steel Tip
 - · Higher density than aluminum adds more stability
 - 1.56 lb

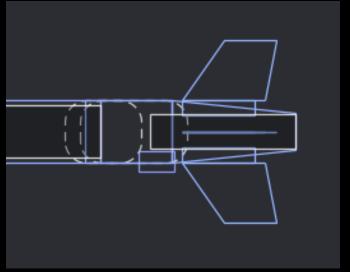
Nose Cone TPM

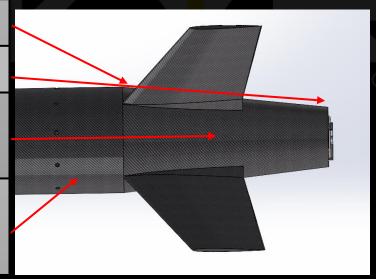
Measure	TPM Value	Unit	Verification Method
Dynamic Pressure	4.1	psi	Force Calculator
Normal Force	30.37	lbf	Force Calculator
Total Drag	96.45	lbf	Force Calculator / ANSYS
Bolt Tear Out (Min-Safe-Distance)	2	in	Force Calculator
Total Compressive Force	371	lbf	Force Calculator

$$Q = \frac{1}{2} * Rho * V^{2}_{Max}$$

$$N_{NOSE} = q A \alpha (C_{N \alpha})_{N}$$
at UCF
$$D = \frac{1}{2} C_{D} \rho v^{2} A_{ref}$$

Nose Cone FMECA


Part	Failure	Criticality	Effect	Mitigation
Nose Cone	Fail to reduce drag	Low	Rocket doesn't reach estimated apogee	Keep iterating to produce the most optimized nose cone shape
Nose Cone	Crumples due to compressive load	High	Rockets drag is significantly increased	Design thickness according to calculations with a safety factor
Nose Cone	Breaks on landing impact	Medium	No more re- flyability (Point loss)	Design it to withstand impact with a safety factor


Boat Tail

- Lowest drag coefficient out of all three possible geometries.
 - The boat tail decreases our drag coefficient by 0.095.

Flat Aft	0 (0%)	0.132 (0%)	0.025 (0%)	0.157 (0%)
	0. (00)	0.040 (000)	AND THE EVER	MENTAL DOCKET
Boat Tail	0 (0%)	0.042 (0%)	0.02 (0%)	0.062 (0%)
	Fore Radius	6.2 Inches		

Fore Radius	6.2 Inches
Aft Radius	3.5 Inches
Length of Taper section	12 Inches
Length of straight section	10.5 Inches

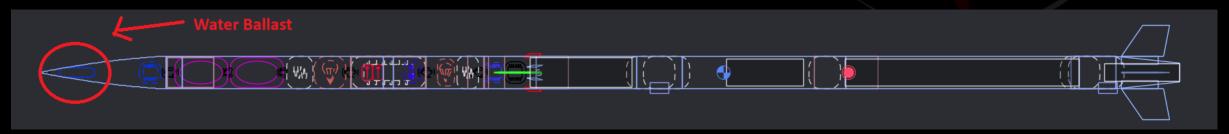
FMECA

Part	Failure	Criticality	Effect	Mitigation
Boat Tail	Fail to reduce drag	Low	Rocket doesn't reach estimated apogee	Keep iterating to produce the most optimized aft end shape
Boat Tail	Breaks upon ground impact	Medium	Rocket no longer has re-flyability (Point Loss)	Design to withstand ground impact with safety factor

Water Ballast

Function/ Performance:

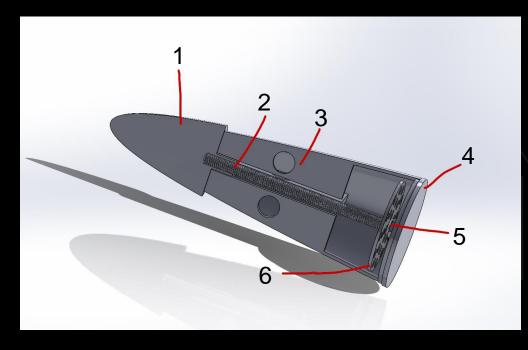
- Add weight for ascent
- Removed at descent or apogee
- Gain 1000 points
- Threaded Rod should sustain snatch force


Characteristics – TPM values:

- 500ml of water (1.1 lbs)
- Nose Cone Tip Weight (~1.6 lbs)

Geometry

 We're pursuing a trans-sonic and subsonic design until we get our actual values.



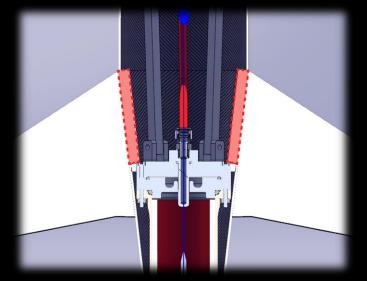
Water Ballast (cont'd)

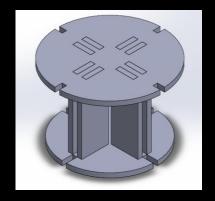
Parts:

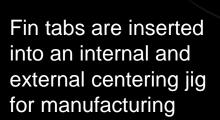
- 1 Nose Cone Tip
- 2 Threaded Rod
- 3 Baffles
- 4 Lid
- 5 Lock Nut
- 6 Mesh Plate

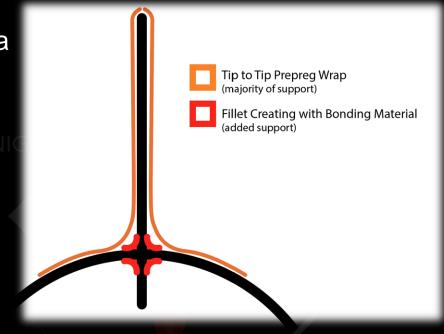
Materials: Polycarbonate 3d print for Water containment portion

- Threaded rod
- Lock nut
- Nose cone tip made of steel




Water Ballast FMECA


Part	Failure	Criticality	Effect	Mitigation
Nose Cone Tip	Fails to Detach	Low	Water fails to release	Tolerance between nose cone tip and water ballast is increased
Baffles	Threaded Rod crushes baffles	Low	Baffles are damaged	Baffle Width is increased
Lid	Fails to seal water	Low	Chance of damaging electronics	Epoxy is used to seal the Water Containment
Mesh	Mesh breaks	High	The nose cone tip can separate from the main rocket creating a safety problem	Mesh becomes thicker.


Fin Cage Component Breakdown

- Pending test results on the durability and deformation of polycarbonate filament in the autoclave, we may revert to a 3D printed fin cage
- No major forces would act on it, it will just be simpler to create as a manufacturing jig and epoxy it into the tube
- Fillets and tip to tip prepreg will still be used in unison

Part	Failure	Criticality	Effect	Mitigation
Fin Cage	Cage Deforms from autoclave	Medium	Fins do not stay perfectly aligned in autoclave	Test polycarbonate filament in autoclave – if fails, swap to wood
Fin Fillet	Fillet does not hold up to flutter forces/ground impact	Medium	Fins break off during flight / No points for re-flyability	Use of high strength/high temp epoxy for fillets, also strong epoxy within body tube on cage.
Tip-Tip Wrap	Wrap does not hold up to flutter forces/ground impact	High	Fins break off during flight / No points for re-flyability	Test articles to find strength of pre-preg and calculations for fin flutter

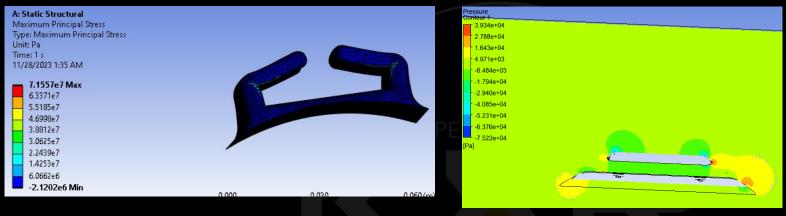
Rail Guides Component Breakdown

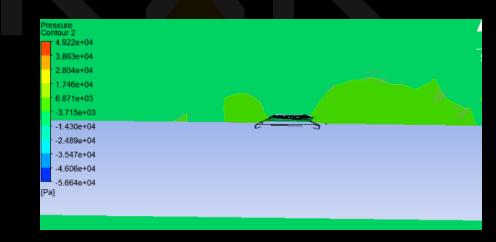
Function/ Performance:

- Hold rocket to rail
 - Supports rocket so stability can effectively develop
 - Prevents any misalignment of trajectory during launch
- Permanent feature, now a part of rocket and influences flight character
- Upstream guide: ~115 inches from the nose tip
- Downstream guide: ~205 inches from the nose tip

ltem	Full Item Description	Cost	Qua ntity	Total	Link (not hyperlink)
Polycarbonate filament	Black PC Filament 1.75 mm 3D Printer Filament 1 KG Spool 2.2LBS Dimensional Accuracy +/- 0.05mm 3D Printing Polycarbonate Material	\$25	2	\$50	CC3D global
Screws	Alloy steel socket head screws.1-72. Item number 91251A068	\$7.23	1	\$7.2 3	McMaster- Carr
nuts	High strength steel hex nuts. Item number 94895A815	\$10.9 2	1	10.9 2	McMaster- Carr
Graphene powder	Lucky Line 4.5 Grams of Dry Lock Lubricant Graphite Powder for Pin Tumbler Locks, 1 Tube (95001)	\$3	2	\$6	Lucky Line

Rail Guides Component Breakdown

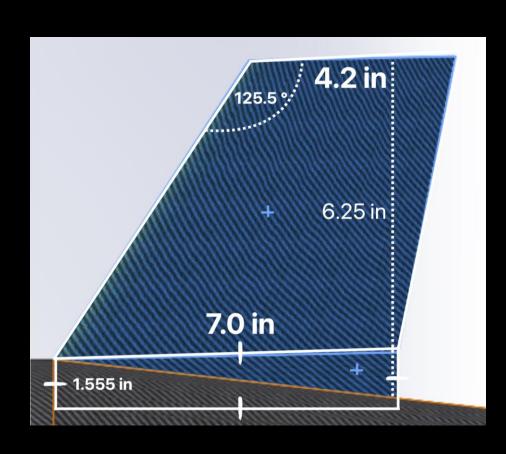

Designed and evaluated at 600lbs


Estimated Factor of Safety of 2.78

$$P_f L_f + P_a L_a - \mu |P_f + P_a| R_T = 0$$

Back plate will be utilized

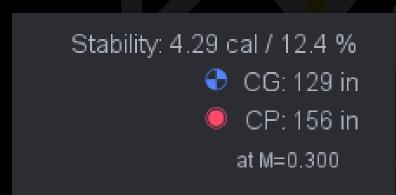
Measure	TPM Value	Units	Verification Method
Resisted launch force	600	<u>lbf</u>	Testing
Mount length	4	inches	Demonstration
Mount height	1	inches	Demonstration
Drag from mount	4000	Pa	Analysis



FMECA

Part	Failure	Criticality	Effect	Mitigation
Bolt	Bolt tear out	High	Rail guides shear off, rocket fails to develop stability. Launch failure	Choose bolts with high strengths, design guides to be thick on face with rocket. Employ back plate
Rail guides	Flange failure	High	Rail flanges tear off, rocket fails to develop stability. Launch failure	Thicken flanges to withstand high safety factor

Fins

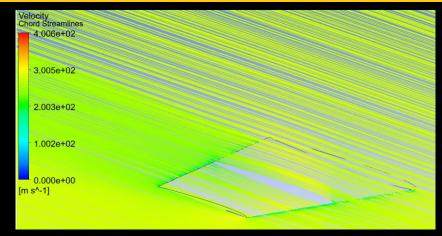


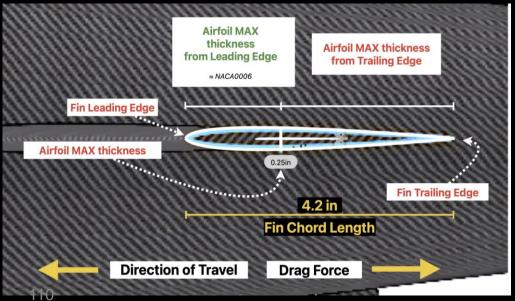
Function/ Performance:

- Shall resist all loads and vibrations experienced in flight.
- The fins shall provide passive stability to the vehicle.

Characteristics – TPM values:

- Pressure [11.66 psi]
- Fin flutter velocity [3055 ft/s] safety factor of [3.92]




Fins

Part	Failure	Criticality	Effect	Mitigation
Fin	Flutter	High	Vibration	Make thicker/Shorter
Fin	Drag	Low	Decreased Apogee	Airfoil
Airfoil	Manufacturing	Medium	Time/Budget	Tolerance

Airfoil

Function/ Performance:

 Airfoil should minimize the aerodynamic forces acting on the vehicle.

Characteristics – TPM values:

- Pressure [11.66 psi]
- Fin flutter velocity [3055 ft/s] safety factor of [3.92]

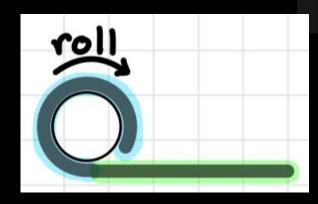
Drag coefficient	Value	
Pressure Cd	1.15E-04	
Viscous Cd	1.51E-04	
Total (drag) Cd	2.66E-04	

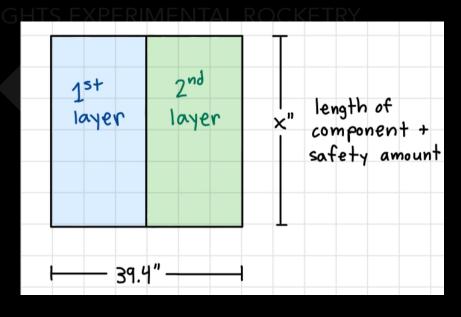
$$y_t = 5t \left[0.2969 \sqrt{x} - 0.1260 x - 0.3516 x^2 + 0.2843 x^3 - 0.1015 x^4
ight],^{[5][6]}$$

where:

x is the position along the chord from 0 to 1.00 (0 to 100%),

 y_t is the half thickness at a given value of x (centerline to surface),

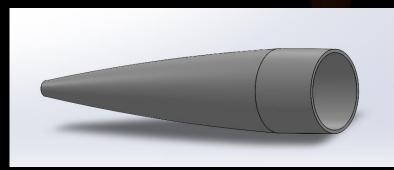

t is the maximum thickness as a fraction of the chord (so t gives the last two digits in the NACA 4-digit denomination divided by 100).



Airframe Manufacturing

Tubes

- Made of 3k 2x2 twill weave prepreg carbon fiber
- Roll the prepreg around a 6 in. metal mandrel to build up layers and form the tube
 - Width of pre-preg is 39.4 in, which is twice the circumference, so one sheet will have 2 layers
 - Roll 3 sheets in total to make 6 plys
- Cure tube in autoclave and post-process as necessary
- Will need to manufacture 5 separate tubes*
 - Payload body tube: 38 inches
 - Recovery switch band: 2 inches
 - Lower recovery tube: 27 inches
 - N tank tube: 19 inches
 - Fuel tube: 31 inches
 - OX tube: 44 inches


^{*}the recovery switch band (length/material) will be added and cut from the lower recovery tube piece

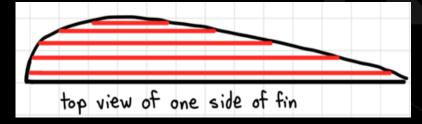
Airframe Manufacturing Contd.

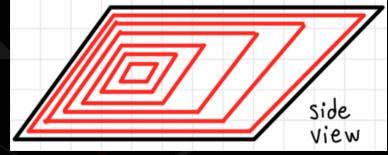
Nose Cone

- Mold: Male mold; 3D-printed out of PLA plastic with extra length on ends as safety factor for material
 - Will take about 5 days to print
 - Will be printed in separate sections due to the size constraints of the 3D printer
 - These will be glued together, most likely with E6000
- Wet-lay fiberglass sleeves over the 3D-printed male mold, according to lay-up schedule
- Composite will be vacuumed and sealed in Autoclave
- Tip machined from 2 in. diameter steel rod
 - Will take 1-2 days to machine
- Water Ballast
 - 3D printed out of PLA
 - Will take only a few hours to print
 - The COTS threaded rod will be cut to size by us KXR FAR10k Liquid 2024

Airframe Manufacturing contd.

- Boat Tail
 - Made from carbon fiber pre-preg
 - Will 3D print a male mold out of polycarbonate plastic (PCP)


It will be 3D printed in separate sections due to size constraints of the 3D printer, glued together
most likely with a high temp. epoxy


- Will need to apply 8 layers of prepreg
 - Cure composite in the autoclave
- Then, insert the fins with epoxy and fillet them to the tail cone
 - May need a high temp epoxy/glue
- Then the tail cone will go back into the autoclave and cure to cement the fins in place

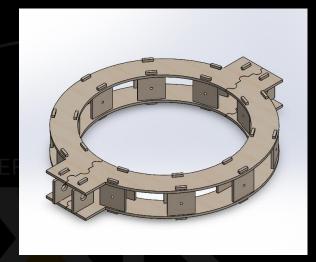
Airframe Manufacturing Contd.

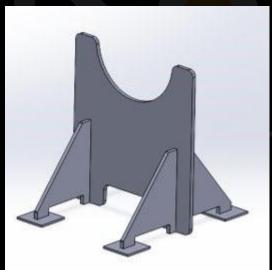
- Fin Cage
 - The material will be G10 fiberglass
 - The parts will be laser cut at a fabrication center and then assembled by us
- Fins
 - Will be tapered, swept, trapezoidal and made from layered pre-preg
 - There will be a total of four fins.
 - The measurements are as follows:
 - Root chord 7.5in
 - Tip chord 5in
 - Height 5in
 - Swept length 2.5in
 - Sweep angle 26.5in

- The airfoil will be NACA0006
- The pre-preg will be cut to different lengths and shapes which will be stacked up to form the airfoil
 - This layering technique will be done for each side of the fin

Airframe Manufacturing Contd.

Holes


 We will be using the drilling collar to make our holes even spaced and the correct size


Jigs

- For drilling we have a drilling collar made from plywood
- The drilling collar will double as our cutting collar
- The rocket stands will be made from plywood and cut with the laser cutter in the TI Lab

Rail Guides

 3D printed out of polycarbonate plastic

Manufacturing Process Plan (MPP)

			Read the instructions on the		DO NOT MIX the resin
			Epoxy/Resin label to find the		and hardner until you are
			proper mixing ratios. Follow the		ready to lay. Be ready to
			instructions to a tee to ensure best		work quickly from this
			results. Mix your Epoxy/Resin ONE	gloves,	point on, the Epoxy/Resin
			LAYER AT A TIME. eg. mix epoxy for	goggles,respirator,	will cure quickly so be
			layer 1, lay fiberglass+epoxy for	popsicle sticks,	sure to have your
		Epoxy/ Resin components	layer 1. Then mix and lay for layer	Epoxy/Resin, mixing	fiberglass and mold ready
Mix Epoxy/Resin for Layer 1	4	are mixed to the proper ratio	2, etc.	cups	to rock.
				gloves, goggles,	
			Apply a layer of resin to the mold to	respirator, mixed	
			seal any tiny pores or gaps in the	Epoxy/Resin, paint	Especially necessary if
Seal Mold	5	Seal mold with layer of resin	material before laying fiberglass.	brush	chosen mold is wood.
			Lay material on top of first resin		
			coat, ensure it's laid in the correct		
		Material is oriented correct,	direction, smooth out the material	1st layer of fiberglass,	
Lay First Layer of Material	6	no bubbles	with gloved hands	gloves	
					The exoxy/resin mix
					should be a specific
					amount proportional to
					the amount of material
					being covered. Use
		Even layer coats entire	Use paint brushes to evenly coat the	epoxy/resin mix, gloves,	expocy calcultor to
Apply Epoxy/Resin Mix	7	surface of material	material with the resin mixture.	paint brushes	calculate amount of mix
Repeat steps 10-11	8		Repeat steps 10-11 until all layers are complete		

Apply Carbon Fiber Prepreg	4	6 plys of carbon fiber	Apply each layer in	PrePreg Carbon	If carbon fiber bubbles
		prepreg must be applied	the same direction	Fiber, Scissors,	or wrinkles, remove
		prepreg must be applied	the same direction	Gloves	said ply and start again
Apply release film over	5	1 layer of release film	Must be even and	Release film.	
carbon fiber		must be evenly placed on	wrinkle free	scissors	
carbon liber		carbon fiber surfaces	wrinkle free	scissors	
Apply breather cloth over	6	Wrap liberal amount of	Must cover entirty of	Breather cloth,	
		breather cloth over	the mandrel	scissors	
		composite surface	the manurer	SCISSOIS	
Vaccum Bag entire mandrel	7	Create an envelope bag	Bag must be totally sealed	Vacuum bag,	
		with gum tape and insert		vacuum sealent	
		test coupon		tape, scissors	
Insert Vacuum Connector	8	Place vacuum connector through bag	Bag must be totally sealed	Vacuum	
				connector,	
				Scissors	
Pull Vacuum in Autoclave	9	Pull 1 atmosphere of	Ensure vacuum holds	Autoclave	
Pull vacuum in Autociave		vacuum pressure		Autociave	
Cure tube in Autoclave	10	Run cure cycle	Cure for 1 hour at	Autoclave	
Cure tube in Autoclave			250F		
	11	Cut test coupon out of vacuum bag	Ensure all breather cloth and vacuum		
Remove Vacuum supplies				Scissors	
			supplies are removed		

Steps 4 - 8 of Fiberglass Coupon for nose cone

Steps 4 – 11 of Carbon Fiber prepreg coupons for tubes and tail cone

- All the test coupon MPPs are finished, except for the fins' coupon, which is still being fleshed out. These MMPs include:
 - Body tube test coupon
 - Tail Cone test coupon
 - Nose Cone test coupon

Machine Costs and Printing Times

- Nose Cone
 - Mold: 5 days to 3D print*
 - Water Ballast: a few hours to 3D print*
 - Nose Cone Tip: 2-3 hours to machine, the material is free. Total cost is < \$100.
- Tail Cone
 - Mold will take 4 days to 3D print*
- Chassis
 - 10 hours to machine
 - Material cost \$150
 - Total cost to manufacture is \$500
- Thrust Plate
 - 3.5 hours to machine
 - Will cost \$158

^{*}only cost is for filament, between \$30-40

Manufacturing Schedule

- Largely dependent on when materials arrive
 - Best case Jan. Apr., worst case Jan. May.

1 – 8 Jan:
Make test coupons
and send out to lab for

testing

Drawings finished for machined parts (all except nose cone tip)

Jan. 14:

Feb 19 – Mar 1: Finalize molds + start printing them Start fins

Mar 11 – 15: Make tail cone Mar 25 – 29:
Finish nose cone
Print water ballast
Machine nose cone
tip

8 – 12 Jan:

Review test data

Prepare to make first tube (finalize body tube MPP, repair mandrel) Jan 15 – Feb 16: Submit drawings to machine shop. Make pre-preg body

tubes.

Mar 4 - 8: Finish fins

Mar 18 – 22: spring break
Start nose cone (if possible)

Month of April: Post-processing, assembly

Questions?

